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EXECUTIVE SUMMARY

The goal of this milestone was to document and popularize the CEED-developed software and standards as
part of the completion of the CEED efforts.

In addition to a final report on the CEED work for Frontier, Aurora, and ECP applications, this milestone
included developments to engage external applications in the DOE and industry, the public release of
the CEED-6.0 software distribution and the next CEED Annual meeting (CEED7AM) which included
representatives from ECP applications, vendors and software technology projects. We also summarize the
CEED educational impact and report on other project activities like research in stopping criteria, fast coarse
grid solves, multi-domain coupling, NVIDIA Hopper performance and in-situ visualization.

The specific tasks addressed in this milestone were as follows.

• CEED-T29 (ADCD04-99): Public release of CEED-6.0

• CEED-T30 (ADCD04-100): Reach out to external applications and sponsors in the DOE and industry

• CEED-T31 (ADCD04-101): CEED Annual meeting (CEED7AM)

• CEED-T32 (ADCD04-102): Final report on all CEED activities, including lessons learned and future
outlook
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1. INTRODUCTION

The goal of this milestone was to document and popularize the CEED-developed software and standards as
part of the completion of the CEED efforts.

In addition to a final report on the CEED work for Frontier, Aurora, and ECP applications, this milestone
included developments to engage external applications in the DOE and industry, the public release of
the CEED-6.0 software distribution and the next CEED Annual meeting (CEED7AM) which included
representatives from ECP applications, vendors and software technology projects.

As part of the milestone, we also summarize the CEED educational impact and report on other project
activities like research in stopping criteria, fast coarse grid solves, multi-domain coupling, NVIDIA Hopper
performance and in-situ visualization.

2. CEED PERFORMANCE IMPROVEMENTS FOR FRONTIER

2.1 NekRS on Frontier

As part of a joint submission with ExaSMR, NekRS was recognized as one of the Gordon Bell Prize finalists
for 2023. The submission explored the performance of NekRS on 9000 nodes of Frontier for a multiphysics
simulation of a full reactor core.

Figure 1: Navier-Stokes time-per-step for conjugate heat transfer (fluid+solid)
runs on Frontier: (left) 500-layer case with GPU-direct on 4-15-23, featuring 512
M fluid elements and 586 M solid elements (377 B points total); (right) 800-layer
case without GPU-direct on 8-6-23, featuring 820 M fluid elements and 938 M
solid elements (603 B points total);

Running these billion+ element cases on 72,000 ranks (one per AMD MI250X GCD accelerator) presented
several challenges stemming from network noise and platform stability issues that were present only at scale
and not manifest at smaller node counts. Figure 1 illustrates the performance challenges faced in initial
full-scale production runs. The left plot shows time-per-step for Navier-Stokes runs with 231 B gridpoints
on P=72,000 GCDs (two GCDs per AMD MI250X on Frontier). The times break down into a bimodal
distribution with the smaller values, highlighted by the red envelope, corresponding to expected values of
∼ 0.3–0.4 s/step. Above this group is a large distribution in the 1–10 s/step range, which is clearly spurious
(and not due to changes in iteration counts per timestep). An extensive battery of tests pointed to flooding
of the network by the innocuous Jacobi-preconditioned velocity solve, which generally is not communication
intensive. The velocity solve, however, does put out relatively long messages because all three components
are computed simultaneously, which allows one to simultaneously communicate all three components during
the gather-scatter operation, thereby reducing message latency overhead. The bimodal nature of the timings
is indicative of network congestion, where messages require multiple attempts to get through or are held
up through other congestion mitigation techniques. We thus experimented with techniques such as solving
for each velocity component separately, thereby putting shorter messages on the network, and avoiding

Exascale Computing Project (ECP) 1 CEED-MS41



Figure 2: NekRS strong-scaling results showing sustained TFLOPS per rank for
Navier-Stokes simulations of a 17×17 rod bundle (illustrated on left) with n=1.6B
grid points as a function of n/P for Polaris, Crusher, and Frontier. Horizontal
dashed lines are at 80% of the saturated performance. Vertical dashed lines
represent n0.8.

GPU-direct. Both of these approaches yielded significant noise reduction with only minor increase in the
minimal time-per-step. Of these two, no-GPU-direct approach was slightly faster and the results in Fig. 1
(right) indicate a significant drop in network-noise overhead. This case sustains 390 GFLOPS per MPI rank
for the full Navier-Stokes run.

An central theme within CEED has been to understand the performance parameters that govern time-to-
solution on exascale platforms. In this scenario, most of the jobs are not using the full machine. For a given
simulation campaign, users will typically pick a number of ranks, P , that is as large as possible while still
retaining order-unity parallel efficiency. (We arbitrarily using η = 0.8 as a target efficiency for purposes of
analysis.) Define Ssat as the saturated per-rank performance rate for the application (in TFLOPS, say) and
the speed on P ranks as SP = ηPSsat, If the simulation requires W floating point operations (flops) per grid
point, then the total work is Wn and the time-to-solution on P ranks is

tη = W n

SP
= W n

η PSsat
.

For η = 0.8 one has

t0.8 = W

0.8
n0.8

Ssat
,

which depends crucially on the ratio of n0.8 and Ssat. Improving node performance (Ssat) will reduce time
to solution only if the ratio n0.8/Ssat does not increase.

We apply the preceding analysis in a series of strong-scale studies with NekRS on Polaris, which is an
NVIDIA A100-based platform at Argonne National Laboratory, and on Crusher and Frontier, the AMD
MI250X-based machines at Oak Ridge National Laboratory. The scaling results are plotted as TFLOPS
per rank versus gridpoints per rank in Fig. 2. In this case, the A100 sustains 870 GFLOPS for P = 104,
while Crusher and Frontier sustain respectively 593 and 577 GFLOPS for P = 128. If we take these values
to be the saturated performance levels, Ssat, then we find from Fig. 2 that 80% parallel efficiency will be
realized at n0.8 := n/P values of 4.7 M, 5.0 M, and 3.0 M for Polaris, Crusher, and Frontier, respectively.
The respective ratios of n0.8 to Ssat are 5411, 8383, and 5056, points-per-GFLOPS, which implies that, at
80% parallel efficiency, Frontier will have the minimum time to solution. Clearly, at almost every value of
n/P > 1 M, Polaris outperforms Frontier. However, Frontier strong scales better than Polaris—its efficiency
does not fall off as quickly and one finds the rather surprising result that users who obey some relatively
strict efficiency rule will be able to run this problem faster on Frontier than on Polaris.
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2.2 MAGMA Update: Towards a Nontensor Backend Utilizing AMD’s Matrix Cores

The MAGMA backend for libCEED provides nontensor basis actions that rely on standard and customized
matrix multiplication (GEMM) kernels. For relatively small order problems, the MAGMA backend provides
optimized GPU kernels that perform the interp and grad basis actions. Those kernels implicitly implement a
sequence of on-device GEMM operations, thus improving data reuse over a standard GEMM implementation.
However, the MAGMA backend still relies on the standard GEMM routines either from the rocBLAS library or
from the MAGMA-BLAS sub-package. The latter option is MAGMA’s own standard GEMM implementation,
which to this date, does not take advantage of AMD’s Matrix Core technology.

The MAGMA development team has been working on utilizing the GEMM hardware accelerators on
modern GPUs in order to explore whether the nontensor backend can be further improved for relatively large
order problems. While the work addresses both NVIDIA’s Tensor Core and AMD’s Matrix Core technologies,
we focus only on performance results for AMD GPUs in this section. The MAGMA team is addressing a set
of challenges to achieve that goal:

• The current goal is to develop a unified kernel codebase that support both NVIDIA and AMD hardware
accelerators.

• Not all precisions are accelerated on both architectures. For example, AMD GPUs accelerate single
precision GEMM using matrix cores, while NVIDIA GPUs do not.

• Accelerated precisions support hardware-specific dimensions. For example, the NVIDIA A100 GPU
supports double precision for (m̄, n̄, k̄) = (8, 8, 4), while the H100 GPU supports four different
combinations (m̄, n̄, k̄) ∈ {(8, 8, 4), (16, 8, 4), (16, 8, 8), (16, 8, 16)}. On the other hand, the AMD
MI210 and MI250x GPUs support double precision for sizes (m̄, n̄, k̄) ∈ {(4, 4, 4), (16, 16, 4)}.

• Depending on the precision and the dimensions (m̄, n̄, k̄), one or more GEMM operation can be done
simultaneously. For example, the MI210 (and MI250x) can perform only one DGEMM operation of size
(16, 16, 4), but can perform four simultaneous operation of size (4, 4, 4).

• Each set of (m̄, n̄, k̄) requires a specific data layout of the input/output matrices (A, B, and C) in the
register file of a single warp.
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Figure 3: Performance of the DGEMM kernel for the nontensor basis action,
(P, Q) = (45, 42). Results are shown for the AMD Instinct MI210 GPU using
ROCM-5.7.0. Relative speedups are shown against rocBLAS.

With respect to the above challenges, the MAGMA team has prioritized the design of a unified kernel
structure that abstracts all the details of the Tensor Core and Matrix Core technologies. While the design is
still in its early stages, the MAGMA team is confident that the design can efficiently support any precision
with any set of dimensions (m̄, n̄, k̄). The current status of the design can be summarized as follows:

• The kernel design is unified across both NVIDIA and AMD GPUs. The design does not need to change
in order to support new precision or new dimensions.
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• The kernel is written using C++ templates with up to 13 tuning parameters. These parameters include
the precision, the tensor/matrix core dimensions (m̄, n̄, k̄), the blocking sizes of the input/output
matrices, and the thread configuration.

• The kernel relies on a number of device routines that hide the details of the hardware accelerator. Each
device routine has a special template specialization for a specific set of {precision, (m̄, n̄, k̄)}.

• The developer/user cannot instantiate the kernel for a precision or dimensions that are not supported
by the hardware.
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Figure 4: Performance of the DGEMM kernel for the nontensor basis action,
(P, Q) = (56, 43). Results are shown for the AMD Instinct MI210 GPU using
ROCM-5.7.0. Relative speedups are shown against rocBLAS.

Preliminary Performance Results. We show preliminary results for the DGEMM kernel on the AMD
Instinct MI210 GPU, which has the same architecture of the MI250x GPU (gfx90a). The details of the
conducted experiments are as follows:

• We compare the performance of rocBLAS, MAGMA’s latest release (2.7.2), and the ongoing work with
MAGMA utilizing the matrix cores

• Each experiment tests a single DGEMM operation with dimensions typically found in the nontensor
basis actions of the bakeoff problems.

• The performance results of MAGMA with the matrix core are collected from two kernel instances only.
A comprehensive tuning for the new design has not yet been done.

• For each dimension tested, only the matrix A can be transposed. The input matrix B is always
non-transposed. It is also short and very wide.

• We consider only dimensions for A that are larger than 40. The specialized kernels currently in the
MAGMA nontensor backend can efficiently address smaller dimensions.

Figures 3 through 5 show the performance results for a set of dimension often encountered in libCEED’s
bake-off problems. A DGEMM-NN operation performs (CP ×N = αAP ×Q × BQ×N + βCP ×N ), while a
DGEMM-TN operation performs (CQ×N = αAT

Q×P × BP ×N + βCQ×N ). We observe that, in most cases, the
MAGMA kernel utilizing the matrix cores achieves the best performance, with speedups reaching up to 1.95×
against rocBLAS. We also observe that utilizing the matrix cores has a huge impact on the performance of
MAGMA, with speedups reaching up to 2.5× against MAGMA’s latest release.

RocBLAS still has an advantage in some scenarios, but we emphasize that the new MAGMA design has
not been thoroughly tested, and so it is possible that a comprehensive tuning sweep would reveal even better
performance. In addition, the new design can be used as a foundation for a new set of specialized kernel that
perform the nontensor basis actions directly, without calling DGEMM inside a loop.
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Figure 5: Performance of the DGEMM kernel for the nontensor basis action,
(P, Q) = (120, 210). Results are shown for the AMD Instinct MI210 GPU using
ROCM-5.7.0. Relative speedups are shown against rocBLAS.

2.3 A Kokkos-based GPU Memory Pool for Omega_h Mesh Adaptation

A memory pool is a technique for managing memory allocation in a computer program. It consists of a
pre-allocated block of memory from which the program can request and release memory from the pool as
needed, without invoking the system’s memory allocator. This can improve the performance, reliability and
portability of the program. Some of the benefits of memory pools are:

• They reduce memory fragmentation, which can cause inefficient use of memory and slow down the
program.

• They reduce the overhead of system memory allocation and deallocation, which can consume a significant
amount of CPU time and introduce latency.

• They allow the programmer to control the size and layout of the memory blocks, which can optimize
the memory access patterns and cache efficiency.

Preliminary work done using the CUDA library for unstructured mesh adaptation in Omega_h on NVIDIA
GPUs shows a significant performance increase when using a memory pool as opposed to traditional memory
management strategies. However, CUDA is a proprietary library developed by NVIDIA for NVIDIA devices.
The use of vendor-specific libraries such as CUDA for GPU computing can limit the portability and flexibility
of applications. As such, this research aims to achieve comparable performance gains on AMD and Intel
devices using the cross-platform library, Kokkos, to implement the memory pool.

Omega_h [55] is a software library written in C++ that provides mesh adaptivity for tetrahedron and
triangle meshes, with an emphasis on high-performance computing. It is designed to add adaptive capabilities
to existing simulation software. Mesh adaptivity allows for the reduction of both discretization error and the
number of degrees of freedom during a simulation, as well as enabling simulations with moving objects and
changing geometries. Omega_h achieves this in a manner that is fast, memory-efficient, and portable across
a variety of architectures.

There exists a memory pool in Omega_h that works well with the CUDA backend on NVIDIA devices.
The memory pool implementation described here instead uses Kokkos [116], a cross-platform library, to obtain
device memory. The design for this pool was inspired by Boost’s Simple Segregated Storage [32], a fixed-size
chunk memory-pool implementation targeting host-sided memory. A fixed-sized chunk design often allows for
faster allocation, whereas variably-sized chunk designs, such as those found in Umpire [18], allow for more
memory efficiency. An important distinction between Boost’s Simple Segregated Storage and other similar
host-bound implementations and ours is that the free-list is interweaved into the chunks themselves. While
this reduces memory overhead, storing a free-list in device memory would require copying the free-list to
the host, manipulating it, and then copying it back to the device each time an allocation or deallocation is
performed. As such, this scheme for managing chunks was impractical. It was much more reasonable to store
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the free-list in host memory. However, now that we have separated the free-list from the underlying chunks
pool, we realized it does not have to be a list, which can result in linear allocation time. Thus, we opted to
use free-sets instead. Furthermore, since memory is only requested and returned in host-side code, the large
parallelism of GPUs does not interfere with traditional set-searching algorithms. As such, we were able to
adapt an existing strategy, known to work well for managing host memory, to device memory where it brings
significant performance improvements.

In Omega_h, a StaticKokkosPool is a non-resizable pool of memory from which an allocation can be made.
Upon instantiation of each StaticKokkosPool, we call kokkos_malloc to get a contiguous block of memory.
When we destroy the StaticKokkosPool, we call kokkos_free to release the memory back to the system. The
memory pool is divided into an array of contiguous fixed-size one kiB chunks. Each chunk is ordered and
indexed by their position.

Allocation. Instead of using a free-list, which may result in linear allocation time, we use a free-mulitset,
freeSetBySize, which results in logarithmic allocation time. When an allocation of n bytes is requested, we
search through freeSetBySize to find the smallest free region that can accommodate the number of requested
chunks. The number of requested chunks is calculated by r = ⌈n ÷ chunkSizeInBytes⌉. In the case of a new
or empty StaticKokkosPools, freeSetBySize would contain only one free region representing the entire pool.
Figure 6 shows how freeSetBySize relates to the memory in the pool. A free region is defined as a set of
contiguous free blocks between allocated regions or ends of the pool. If the found free region has more chunks
than the number of requested chunks, then we split the region and only allocate the chunks requested. The
remaining region remains in the free list.

Allocated Free
0 1 2 3 4 5 66 7 8 9 10 11 12

[0,2)
[5,6)

[10,13)

Figure 6: A fragmented pool with freeSetBySize showing how free regions are
organized in a tree structure. Index pairs are sorted top to bottom by the size of
the free region they represent in decreasing order.

Deallocation and Defragmentation. In addition to freeSetBySize, freeSetByIndex is used to achieve
defragmentation in logarithmic time. As the name suggests, index pairs stored in freeSetByIndex are sorted
in numerical order by the first index as depicted in Figure 7. It is not possible for two index pairs to “overlap”
or share the same start or end index.

0 1 2 3 4 5 66 7 8 9 10 11 12

[0,2)
[5,6)

[10,13)

Figure 7: A fragmented pool with freeSetByIndex showing how free regions are
organized in a tree structure. Index pairs are sorted left to right by the indices of
the free region they represent in increasing order.

When memory is returned to the pool, the region is temporarily inserted into the tree as shown in Figure 8.

0 1 2 3 4 5 66 7 8 9 10 11 12

[0,2)
[5,6)

[10,13)[2,5)

Recently Freed

Figure 8: A fragmented pool with freeSetByIndex showing with a recently
returned region.
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We then check for free regions adjacent to the recently returned region, remove the two or three index
pairs if any adjacent regions were found, and then insert one index pair encompassing the defragmented region.
For example, in Figure 8 the allocation spanning blocks [2,5) is freed. This new free region is surrounded by
pre-existing free regions [0,2) and [5,6). Thus we remove the three index pairs and replace them with [0,6).
The result is visualized in Figure 9.

0 1 2 3 4 5 66 7 8 9 10 11 12

[0,6)
[10,13)

Figure 9: A less fragmented pool with freeSetByIndex shown after
defragmentation

Resizing. In the event that we cannot find a suitable free region large enough to satisfy the allocation
requested, we make a new StaticKokkosPool. The KokkosPool class performs this for us by maintaining a list
of StaticKokkosPools. In Omega_h, KokkosPool is a singleton object that is lazy initialized upon the first
allocation request. Upon instantiation, it creates one StaticKokkosPool and adds the pool to its list. Thus,
when you allocate through KokkosPool, it begins at the first StaticKokkosPool in the list and tries to allocate
from it. If the allocation fails, it moves on to the next StaticKokkosPool and tries to allocated from that. We
repeat this for every StaticKokkosPool in the list until we achieve a successful allocation. If we have reached
the end of the list and were not able to find a large enough free region in any of the StaticKokkosPools, we
allocate a new StaticKokkosPool with the size of max (r , mostChunks ∗ g), where r is the number of chunks
requested as defined above, mostChunks is the number of chunks in the largest StaticKokkosPool, and g is
the growth factor. In Omega_h, the default growth factor is two. This strategy ensures an allocation will be
successful until the machine runs out of physical memory.

Testing. The implementation discussed here resides in Omega_h, a GPU accelerated mesh adaptivity
library. The library was benchmarked with and without the memory pool against the FUN3D delta wing
case from the Unstructured Grid Adaptive Working Group adaptation benchmarks [2] on the Oak Ridge
Leadership Computing Facility’s Frontier. We ran the 500k case, which comprised of 581,196 tetrahedrons
before adaptation and 5,283,878 tetrahedrons after adaptation, with the pool disabled and with the Kokkos
MemoryEvents tool enabled to get a sense of the allocation patterns for this particular set of benchmarks.
We found that it uses at most 670 MiB during the lifetime of the benchmark. Thus we chose an initial pool
size of 700 MiB. In addition, we found that allocation requests were greater than one kiB more often than
not, thus we decided to set the fixed-chunk size to one kiB.
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Figure 10: A bar plot showing the performance improvements in the delta wing
case brought by the implementation of a memory pool. Less time is better.
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Performance. After we determined these parameters for the pool, we ran all subsequent benchmarks
without the Kokkos Tools enabled. In the 50k case without pooling, adapting 581,196 tetrahedrons to 533,937
tetrahedrons took 0.89 seconds total. With the pool engaged, this time was reduced to 0.49 seconds, a 45%
time reduction. In the 500k case without pooling, adapting 581,196 tetrahedrons to 5,283,878 tetrahedrons5
took 18.28 seconds total while, with the pool enabled, adaptation only took 11.57 seconds on average, a 37%
time reduction. We then reduced the initial size of the pool to 100 KiB. This is significantly less than what
we determined the benchmarks need and should require the pool to resize more often during the runtime. We
found that difference in time reduction brought about by the additional resizing behavior of the pool was less
than one percent. Figure 10 shows these results.

This implementation only splits and coalesces free regions, not individual chunks. Thus, it is possible for
small allocations, or allocations that don’t roughly align with multiples of the chunk size to result in excessive
memory waste as the vast majority of a chunk may not be used, especially if chunks are large. Alternative
implementations such as Umpire on the other hand split and coalesce individual chunks, resulting in lesser
memory usage. Regardless, this implementation manages to bring substantial performance improvements
in a cross-platform manner. Thus far, this implementation has been tested on AMD and NVIDIA devices.
Future work aims to test this implementation on Intel devices as well. Furthermore, this implementation
has only been tested on systems with traditional, separate discrete host and device memory. With the
advent of modern unified memory architectures, we intend to test this implementation on newer systems such
those that utilize NVIDIA’s Grace-Hopper APU and AMD and Intel equivalents. Here, we determined that
fixed-size chunk memory pools are just as suitable for use in device memory spaces as host memory spaces.
We also determined that such a pool is suitable for use across different devices and vendors. Testing has also
confirmed that pooling device memory significantly reduces the running time of an application by up to 45%.
In conclusion, fixed-size chunk memory pools are a viable method of managing device memory that brings
substantial performance improvements in a cross-platform manner.

2.4 Ratel Plasticity on Tioga

Figure 11: Accumulated plastic strain for an oblique press of a Schwarz Primitive
lattice using Ratel.

The Ratel team has developed plasticity models for Ratel using libCEED qfunctions. The formulation
includes a return mapping algorithm in the residual evaluation qfunction, with a stored solution to the return
mapping problem for use in matrix-free Jacobian application. The plasticity solver has been applied to
various benchmark problems as well as nontrivial geometries such as Figure 11 and Figure 12. An efficiency
spectrum running increasing problem sizes on one node (8 logical devices of MI250X) and 8 nodes (64 logical
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Figure 12: Tetrahedral mesh of grains in binder, segmented from CT scans and
meshed using Gmsh.

Figure 13: Relative efficiency of hyperelastic and elastoplastic residual evaluation
using Ratel on LLNL Tioga’s MI250X.

devices) of LLNL’s Tioga is shown in Figure 13. We observe that evaluating plasticity residuals incurs only
modest efficiency overhead as compared to hyperelasticity and exhibits excellent weak scaling from one to
several nodes.

3. CEED PERFORMANCE IMPROVEMENTS FOR AURORA

3.1 NekRS Performance on Aurora and Sunspot

ExaSMR performance for a singlerod on a single PVC.
System backend tiles tstep(s) flops/rank
Aurora SYCL 1 6.95447e-02 9.01484e+11
Aurora SYCL 2 4.74475e-02 6.56709e+11
Sunspot SYCL 1 6.91035e-02 9.02007e+11
Sunspot SYCL 2 4.82435e-02 6.51462e+11

Table 1: NekRS ExaSMR performance for singlerod simulation on Aurora and
Sunspot. tstep is measured by averaging timings for 101-500 timesteps for 500
timestep runs. E = 7168, N = 7 and n = 2.4M . n/P = 2.4M for one tile and
n/P = 1.2M for two tiles.
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Figure 14: NekRS ExaSMR strong-scaling performance on Sunspot in
comparison with Frontier and Polaris for 17 × 17 rod-bundle with 10 layers.

The NekRS team has been working in collaboration with ALCF and Intel to port NekRS to Aurora for
SMR and Wind applications.

Simulations on Aurora to date have been limited to a small number of tiles. Preliminary results provided
in Table 1 show that the single-PVC Aurora performance is comparable to Sunspot. Both yield an ≈ 1.45 ×
speedup when moving from one MPI rank per node to two MPI ranks per PVC (i.e., one rank per tile) for a
full Navier-Stokes simulation of a single fuel rod in an ExaSMR geometry using total number of grid points
of 2.4M. The single-tile runs (n/P = 2.4M) sustain 0.9 TFLOPS per rank, while the two-tile runs (n/P =
1.2M) sustain 0.65 TFLOPS per rank, or 1.3 TFLOPS per PVC.

Further insight to initial results on Intel are provided by Figs. 14–15, which show strong-scaling results
for 17×17 ExaSMR rod-bundle studies at two different resolutions (95M and 161M points, respectively),
using NekRS V22 and V23. For each case, we run two ranks per Intel PVC on Sunspot (one tile), two ranks
per AMD MI250X on Frontier (one per GCD), and one rank per NVIDIA A100 on Polaris.

The smaller case of Fig. 14 shows that NekRS V23 is slightly faster than V22, but this discrepancy
all but disappears for the larger case of Fig. 15. Otherwise, the performance variation with problem size
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Figure 15: NekRS strong-scaling performance on Sunspot in comparison with
Frontier and Polaris for 17 × 17 rod-bundle with 17 layers.

(95M vs. 161M) and version (V22 vs. V23) is not significant, with 80% parallel efficiency being realized for
n/P = n0.8 ≈ 2M–3.5M across all cases.

3.2 NekRS Performance on Sunspot for Wind Applications

Figure 16 demonstrates preliminary performance results on Sunspot using E = 1, 292, 000, N = 7, and
n = 443M. The top figure in Fig. 16 shows simulation of a wall resolved LES (WRLES) of flow over an
AH93-W-257 airfoil at Rec = 100, 000 and the angle of attack, AoA = 0. Using a restart file from the WRLES
simulation, we performed 1000 step runs on Sunspot and Polaris with ∆t =3.25e-5 using BDF2 for the
timestepping and demonstrated the scaling results in Fig. 16. With the non-optimized advection kernels of
NekRS on Sunspot, the performance is 2X slower than Polaris. Table 2 demonstrates tstep measured by the
average time per step using 100 steps from 901 to 1000 steps. For these simulations, the iteration numbers
for velocity (vi) and pressure (pi) are relatively high with 2 and 7, respectively, and thus tstep is more than
4.6e-1 s on Sunspot and 1.9e-1 s on Polaris at the parallel efficiency of 80% using more than n/P = 6M on
Sunspot and Polaris.
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Figure 16: NekRS simulation of a wall resolved LES (WRLES) of flow over an
AH93-W-257 airfoil with Rec = 100, 000 (top). NekRS strong-scaling performance
on Sunspot in comparison with Polaris for turbine-blade simulations (bottom).
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NekRS Strong-Scaling for AH93-W-257 airfoil
NekRS on Sunspot

node tile n/tile vi pi tstep(s) Peff
3 36 1.2310e+07 1.94 6.77 7.2467e-01 100
6 72 6.1549e+06 1.96 6.92 4.6239e-01 78.36
12 144 3.0775e+06 1.97 6.73 3.1224e-01 58.02
18 216 2.0516e+06 1.95 6.76 2.7138e-01 44.50
24 288 1.5387e+06 1.98 6.92 2.3794e-01 38.07

NekRS on Polaris
node GPU n/GPU vi pi tstep(s) Peff

4 32 1.3849e+07 1.97 6.92 3.9200e-01 100
5 40 1.1079e+07 1.99 7.08 3.4031e-01 92.1
10 80 5.5394e+06 1.98 6.80 1.9999e-01 78.4
15 120 3.6930e+06 1.95 6.86 1.5414e-01 67.8
20 160 2.7697e+06 1.95 6.61 1.3406e-01 58.4
25 200 2.2158e+06 1.97 6.79 1.2267e-01 51.1
35 280 1.5827e+06 1.95 6.80 1.0910e-01 41.0
40 320 1.3849e+06 1.98 6.83 1.0106e-01 38.7

Table 2: NekRS strong-scaling on Sunspot for airfoil simulations, shown in
Fig. 16 (top), in comparison with Polaris. E = 1, 292, 000, N = 7, and n = 443M.

3.3 SYCL Backend in MFEM

The MFEM SYCL single source programming kernels relies on the SYCL 2020 specification, which is based on
C++17. The following capabilities are incorporated into this new backend:

• Unified Shared Memory (USM), which is required for pointer-based programs to function without SYCL
buffers and accessors. This is necessary to ensure that the MFEM code, which specifically describes
the inputs and outputs of each kernel, does not need to be modified.

• Support for MFEM’s internal threading (MFEM_FOREACH_THREAD) via low-level compiler intrinsics.
Without modifying the code, MFEM SYCL can now target NVIDIA, AMD, and Intel backends.

• New ways to declare shared memory variables inside MFEM’s kernels through either:

– Static shared memory: which requires Intel’s sycl_ext_oneapi_work_group_local compiler extension
which defines a SYCL class template inspired by the C++ thread_local and the CUDA __shared__
keywords, or:

– Dynamic shared memory: conform to the SYCL specification of declaring shared memory variables,
which also maps well to NVIDIA’s and AMD’s possibilities, but requires code modifications.

Relying on a vendor extension prevents the backend from being portable; hence, this method is not
actually ideal for supporting a SYCL backend that conforms to the standard. The use of dynamic
shared memory is new to MFEM and requires some adjustments. For example, the programmer needs
to declare explicitly the amount of shared memory that is required by each thread block and make
use of a new object in order to access this memory. This new way of declaring variables was not
accessible through MFEM because it could have led to performance losses. However, while developing
this new feature, the team was able to match the performances of the static kernels on the GPU with
these dynamic shared variables without using ahead-of-time instantiated kernels or through the use
of just-in-time compilation. However, such compilation strategies are still needed to match the CPU
performances from a single source kernel. The next major release of MFEM will be the goal for the
necessary changes to incorporate the SYCL backend while keeping the kernel’s performance intact.

The MFEM SYCL backend has been tested with Intel’s DPC++ compiler which uses LLVM/Clang, and
with the OpenSYCL compiler which can target OpenMP, CUDA and HIP/ROCm. MFEM’s SYCL backend
implementation has been verified on CPU (hosts) and on Intel CPU (OpenCL) and GPU hardware.
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3.4 Ongoing MAGMA SYCL Porting Work

The UTK team has continued efforts to port MAGMA for Intel GPUs using SYCL. Recent activities include
ongoing investigations of issues in the dense linear algebra routines that make up the core of MAGMA, as well
as porting sparse linear algebra functionality. Both fronts have presented challenges. For the dense routines,
we have encountered odd bugs in some versions of Intel software. For example, MAGMA is currently making
significant use of Intel’s dpct headers, which provide SYCL implementations of many “CUDA-like” features
that are not part of the SYCL standard. The Intel conversion tool initially recommended dpct’s matrix
memory copy routine (dpct::matrix_mem_copy) to replace the matrix memory copy routines from cuBLAS
(cublas[Get/Set]MatrixAsync, cudaMemcpy2DAsync), but we have experienced test failures at specific matrix
sizes when using this routine. Replacing the code with the latest version of the Intel 2D memcopy extension
(ext_oneapi_memcpy2d), however, fixes the test failures, so we will transition to use this extension in the official
SYCL branch of MAGMA. With the help of Thomas Applencourt and Colleen Bertoni at ALCF, we have
also found a bug in MKL ZGEMM, which behaves differently depending on whether one uses implicit scaling,
with both tiles of the GPU, or explicit scaling, with one tile. This has been reported to Intel.

For the sparse porting work, a challenge thus far has been MKL’s lack of complex type support for sparse
linear algebra routines on GPUs, though this is expected to change soon. MKL sparse also only supports
one sparse matrix representation, CSR, while the CUDA MAGMA code (and cuSPARSE) supports other
types, like CSC, COO, and ELL. Thus, the initial release of the sparse functionality for MAGMA’s SYCL
backend will not provide full support compared to the CUDA or HIP versions, though we will continue to
add interfaces as MKL sparse support expands. Our current strategy of maintaining separate code for SYCL
BLAS routines (as compared to HIP, which is autogenerated from CUDA), which does result in a heavier
code maintenance burden, allows us more freedom to make changes in order to add our own custom support
of some sparse linear algebra features not covered by MKL.
libCEED MAGMA backend for non-tensor basis functions on PVC. In the NDA appendix of
the previous CEED milestone report, we presented some initial results for the libCEED MAGMA backend
non-tensor basis performance on PVC, including direct comparisons with A100 and MI250X. The MAGMA
backend of libCEED has two separate modes: for lower-order basis functions–defined by the backend as having
both total number of basis points and total number of quadrature points per element less than 40–there
are specialized batch GEMM kernels which have been shown to achieve better performance than standard
GEMM/batch GEMM available in the MAGMA library or vendor libraries. These kernels use the runtime
compilation framework of the other libCEED CUDA/HIP backends. For higher-order basis functions, the
MAGMA backend employs a “GEMM selector” which uses lookup tables of GEMM tuning data to select a
standard GEMM or batch GEMM configuration based on the size of the problem.

An initial experimental libCEED MAGMA SYCL backend using the standard GEMM selector has been
created. However, our current priority is improving the performance of the specialized GEMM kernels for
lower-order basis functions. Performance optimization on Intel Data Center GPU Max Series (code name
PVC) is ongoing for this workload. In the following, we present a performance case study focused on kernels
where (P, Q) = (20, 11), with P as the number of basis function nodes per element and Q as the number of
quadrature points per element. This corresponds to standard third-order Lagrange tetrahedron elements in
MFEM with a constant-coefficient DiffusionIntegrator. For simplicity, we also use this number of Q points
for the interpolation tests, as this is what the current MAGMA backend uses in its lookup tables, but future
work should also consider higher numbers of quadrature points, as would generally be used for the mass
operator on tetrahedrons. For all experiments, each basis action application was repeated 11 times, with the
first application treated as a warm-up and the following 10 averaged to produce the final timings.
Comparison of oneAPI versions. The previous results shown in the prior CEED milestone report were
obtained with the “oneapi-prgenv/2022.10.15.006.001” module. We first compare performance with the
current (as of this writing) default module on Sunspot, “eng-compiler/2023.05.15.006,” to see if there are
any significant changes. In Fig. 17, performance is shown versus N, which is equal to the number of basis
components times the number of total elements in the mesh. For each N, a particular batch size tuning
parameter, NB, has been selected in order to determine the performance; this will be discussed more below.
The NB value for a given N may not be the same for each oneAPI version. We find that the difference
between the two oneAPI versions is minor, except for the transpose mode gradient kernel, where the older
results are significantly better for larger N. The newer module has immediate command lists turned on by
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Figure 17: Comparing the performance of older (oneapi-
prgenv/2022.10.15.006.001) and newer (eng-compiler/2023.05.15.006) oneAPI
distributions on one tile of PVC. For the gradient kernel, we also consider the
newer distribution with immediate command lists turned off, as was the default
setting with the older module. All cases use large GRF mode and subgroup
size/SIMD width 32.

default, while the older module did not. Thus, for the gradient kernel, we also include a case with the newer
module but no immediate command lists (“new, no ICL”), to determine whether this is contributing to the
gap in performance. However, as turning immediate command lists off decreases the performance of the
newer module, we conclude the decrease is due to some other change in the newer compiler or runtime.
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Figure 18: Selecting the best interpolation NB for a group of values of N, on
one tile of PVC. The top row shows a subgroup size of 32, for interpolation and
gradient basis actions, while the bottom row shows subgroup size 16. Dashed
vertical lines indicate the selected best value for NB. All cases use large GRF
mode.

Effects of subgroup size. We also investigated the effects of changing the subgroup size/SIMD width of
the kernels. For PVC, we can choose either 32 (used in all previous results) or 16. This size is analogous to
a warp for CUDA. In Figure 18, we show the effect of changing the SIMD size on the selection of the NB
tuning parameter. For every value of N, NB was varied from 1 to 32, inclusive of every value in between. To
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find the best choices for NB, values of N were split into five groups with the same process that the libCEED
MAGMA backend currently uses to select a specialized kernel to run for a particular problem size. Within
each group, the performance for each N was normalized by the highest-rated GFLOP/s rate for that N, such
that we can compare relative performance across the different values of NB within the group. To select the
“best” NB for the group, we choose the value which maximizes the minimum performance across the group.
Figure 18 illustrates this selection within one N group for the interpolation (left) and gradient kernels, with
SIMD32 on the top row and SIMD16 on the bottom. The chosen NB values are indicated by the vertical
lines. We clearly see the effect of changing the subgroup size, not only on the best selected value, but in the
performance trends for the non-transpose kernels as NB grows.

While the effect on the tuning process is evident, the question remains whether using SIMD32 or 16
substantially changes the overall performance for a particular N. In Figure 19, we show both SIMD versions,
along with the previous A100 and MI250X results. Note that in all of the following results, we are using
one tile of PVC and one GCD of MI250X, but the entire A100 GPU. An interesting trend is that SIMD16
increases performance for the non-transpose application of both interpolation and gradient basis actions, yet
SIMD32 does better for the transpose case. Unfortunately, both still lag the other architectures significantly,
with the exception of the transpose interpolation case, where the current SYCL kernels are competitive with
the HIP/MI250X performance until reaching the largest values of N that we considered.
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Figure 19: Comparing performance of the specialized MAGMA backend non-
tensor interpolation (top row) and gradient (bottom row) kernels. Tests performed
on NVIDIA A100 (CUDA 11.4), one GCD of AMD MI250X (ROCm 5.4), and
one tile of Intel PVC (eng-compiler/2023.05.15.006).

Occupancy and IGC compiler output. To further investigate the performance, we examined IGC
compiler output for several metrics which might be expected to affect performance of the kernels. The
three highlighted values – register spill size, memory bank conflicts, and number of sync instructions – are
normalized across values of NB and shown in the left plots of Figures 20–22. The normalized performance of
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the kernels is also shown for a small, medium, and large value of N. The right side of the figures contains
occupancy information for the same values of N. Occupancy here is “total” tile-based occupancy, i.e., taking
the entire tile into account, rather than just the number of workgroups that can theoretically fit on one
Xe-core at a time. If there are too many groups to fit on the tile at one time, the reported occupancy is
a weighted average of the occupancy of “full” sets of groups and the occupancy of a final “leftover” set of
groups. That is why the occupancy is always lower for the smallest value of N – there is not enough work
to fill the tile. We also note that the maximum possible occupancy is only 50%, as we are using the large
register file option for these kernels (previously shown to improve performance), which cuts the total possible
subgroups per Xe-core in half. Intel’s theoretical occupancy calculation is based on subgroup size, group size,
total size, and shared memory usage. For a particular kernel, the group size is the same across all values of
NB, but the total number of groups changes with NB. The shared memory usage also increases linearly with
NB. In the occupancy plots, markers with a black center indicate that the number of groups per Xe-core is
limited by shared memory for this configuration, rather than group size. For the interpolation figures (20 and
21), which have SIMD32 on the top row and SIMD16 on the bottom, we clearly see how the smaller SIMD
size reduces register spilling and the number of configurations limited by shared memory usage.

A perhaps surprising result was that register spills and bank conflicts are not as clearly tied to performance
as we expected. For example, in the non-transpose interpolation case with SIMD32 (Fig. 20), the best-
performing NB for N = 40960 is one with a non-zero value for both spill size and bank conflicts, despite other
options with similar theoretical occupancy. It’s also possible that register spills matter more when the total
number of groups is smaller, as the performance drop at large NB for N = 409600 is much less than for the
other values of N, except in the case of transpose interpolation with SIMD16 (Figure 21, bottom left), for
which no kernels reported register spills.

0 5 10 15 20 25 30

NB

0.0

0.2

0.4

0.6

0.8

1.0

n
or

m
al

iz
ed

m
et

ri
cs

interp, CEED NOTRANSPOSE, SIMD32

bank conflicts

sync insts

spill size

Gflop/s, N = 4096

Gflop/s, N = 40960

Gflop/s, N = 409600

0 5 10 15 20 25 30

NB

0

10

20

30

40

50

oc
cu

p
an

cy
(%

)

interp, CEED NOTRANSPOSE, SIMD32

N= 4096

N= 40960

N= 409600

0 5 10 15 20 25 30

NB

0.0

0.2

0.4

0.6

0.8

1.0

n
or

m
al

iz
ed

m
et

ri
cs

interp, CEED NOTRANSPOSE, SIMD16

bank conflicts

sync insts

spill size

Gflop/s, N = 4096

Gflop/s, N = 40960

Gflop/s, N = 409600

0 5 10 15 20 25 30

NB

0

10

20

30

40

50

oc
cu

p
an

cy
(%

)

interp, CEED NOTRANSPOSE, SIMD16

N= 4096

N= 40960

N= 409600

Figure 20: Non-transpose interpolation kernel occupancy and normalized (with
respect to maximum among values of NB for a particular N) performance
versus NB. Three values of IGC compiler output are shown for comparison,
also normalized based on the maximum value. Occupancy is theoretical, based
on group size, total groups, and shared memory requirements; a marker with
a filled black center indicates that the occupancy is limited by shared memory
usage for that configuration. The top row is for kernels compiled with SIMD
width/subgroup size of 32, while bottom has size 16.

Figure 22 focuses on SIMD32 for the gradient kernels, both non-transpose (top row) and transpose
(bottom row). The effect of register spills, sync instructions, and bank conflicts on performance could appear
clear for the non-transpose case, yet less so for transpose, casting doubt on whether this particular set of
information from the compiler can predict performance or guide development of improved kernels for SYCL.
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We plan to continue our investigation with increased use of Intel performance tools.
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Figure 21: Transpose interpolation kernel occupancy and normalized (with
respect to maximum among values of NB for a particular N) performance
versus NB. Three values of IGC compiler output are shown for comparison,
also normalized based on the maximum value. Occupancy is theoretical, based
on group size, total groups, and shared memory requirements; a marker with
a filled black center indicates that the occupancy is limited by shared memory
usage for that configuration. The top row is for kernels compiled with SIMD
width/subgroup size of 32, while bottom has size 16.

4. ECP APPLICATIONS SUPPORT

4.1 ExaAM

Through a collaboration with the CEED and ExaWorks teams, the ExaAM team recently developed an
uncertainty quantification workflow to quantify how varying additive manufacturing (AM) build parameters
affects the mechanical response of AM built parts. The collaboration with the CEED team was largely focused
on accelerating the ExaConstit component which would ultimately be used in the most computationally
expensive stage of the ExaAM challenge problem workflow. As reported in the past CEED-MS40 report, this
collaboration was vital in optimizing a key aspect of ExaConstit which was preventing its performance on
Crusher/Frontier from being faster than Summit.

ExaAM Frontier Runs. The ExaAM team gained access to Frontier at the end of March 2023. Since
ExaConstit code base was already running on Crusher, it was a straightforward process to modify the Crusher
build script to work with all the Frontier specific modules. We have uploaded the Frontier build script to the
ExaAM uncertainty quantification workflow repo [24]. Initial testing of ExaConstit on Frontier versus Crusher
revealed no performance drops, and we were still obtaining a 1.5x speed-up over the Summit runs for a 4e6
linear hexahedron test case. After the verifying performance of each component, we began stress-testing our
uncertainty quantification workflow for the ExaAM challenge problem, as seen in Figure 23. More specifically,
we stressed the Stage 3 Radical-EnTK [13] workflow manager component by scaling up to several hundred
nodes per run as our challenge problem workflow would require 7850 high fidelity ExaConstit simulations to
be run on 8000 nodes of Frontier. These 7850 simulations are the result of the n-fold Cartesian product of the
varying melt pool parameters (5 variations) for Stage 1a, microstructure generation parameters (25 variations)
for Stage 1b, loading conditions (21 variations) for Stage 3 and temperatures (3 variations) for Stage 3. The
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Figure 22: Gradient kernel occupancy and normalized (with respect to maximum
among values of NB for a particular N) performance versus NB. Three values of
IGC compiler output are shown for comparison, also normalized based on the
maximum value. Occupancy is theoretical, based on group size, total groups, and
shared memory requirements; a marker with a filled black center indicates that
the occupancy is limited by shared memory usage for that configuration. The top
row shows non-transpose kernels, while the bottom row is transpose; all kernels
use subgroup size/SIMD width 32.

computational requirement for each ExaConstit simulation is the same and is 8 nodes of Frontier with 64
MPI ranks using the typical 1 CPU per 1 GPU decomposition, and each simulation requires between 10-20
minutes to complete. Therefore, even using 8000 nodes, we are only able to run 1000 concurrent ExaConstit
simulations at a time. On May 14th 2023, we ran all 7850 ExaConstit runs within 2 hours and 15 minutes.
Out of these 7850 simulations, only 8 failed which could be accounted to a single node failure. Our workflow
manager automatically re-submitted these 8 jobs and marked their successful completion after they finished
re-running. As part of the Radical-EnTK toolkit, our workflow captures the resource utilization through-out
the life of the workflow run. We can see in Figure 24 that for a majority of the run we are utilizing 100% of
the 8000 nodes of Frontier, and then as we end up with fewer than 1000 jobs the utilization falls below 100%
as no more jobs are being submitted.

4.2 MARBL

As Lawrence Livermore National Laboratory (LLNL) will soon have in place the El Capitan exascale
supercomputer, the focus of the MARBL team for the past months has been to achieve high performance on
AMD-based GPUs. Reaching this task has been aided by the multiyear effort under the NNSA Advanced
Simulation and Computing (ASC) program, and by the collaborations with ECP and the CEED co-design
center. Previous CEED milestone reports [36, 75, 22, 59, 60] have presented the various co-design efforts
between the teams, including the development of the Laghos [64, 35], Remhos [97, 5, 4], and pmesh-optimizers
[38, 37] miniapps; new matrix-free algorithms for the Lagrange stage of the code [20]; GPU-based mesh
optimization algorithms [23]; matrix-free remap methods [49, 50]. A comprehensive overview of that work
can also be found in [119]. In this section we give a summary of the recent AMD porting efforts, including
some new matrix-free numerical approaches and algorithmic developments that were required to achieve GPU
performance; a more detailed technical description of the work can be found in [110]. As a result of these
efforts MARBL is currently able to perform large-scale practical 3D multiphysics simulations, like the ones in
Figures 25 and 26, on the latest El Capitan Early Access Systems (EAS-3) using AMD MI250X GPUs.
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Figure 23: A self-consistent AM UQ workflow to quantify the effects of machine
parameters on AM part performance.

Figure 24: Resource utilization by the Radical-EnTK application (UQ Stage
3): 100% corresponds to 448,000 CPU cores (not considering 8 cores per node
reserved for system processes) and 64,000 GPUs.
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Figure 25: Results of MARBL simulation of the BRL81a shaped charge, with off-
axis detonation, consisting of 114M quad points on a 3D high-order, unstructured
NURBS mesh, run on 4 nodes of EAS-3 (16 MI250X GPUS, 32 MPI ranks), left
to right: MPI domain decomposition across 32 ranks, mass density at final time,
and density gradient (log scale) at final time.

Figure 26: Schematic depiction of the laser driven Kelvin-Helmholtz Instability
experiment (left) and 3D MARBL model (material density, log scale, combined
with volume rendering) consisting of 600M quadrature points run on 20 nodes of
EAS-3 (80 MI250X GPUs with 480 MPI ranks, 3X GPU over subscription)

AMD GPU Portability. GPU and performance development efforts in MARBL have always been made with
platform portability at the forefront. MARBL leverages the RAJA Portability Suite for kernel abstractions
[16], Umpire for memory allocation and pool abstractions s[17], as well as the MFEM library’s memory
movement abstractions [7]. Previous work and staff expertise in GPU development gained during the team’s
engineering efforts for ALE-Hydro on NVIDIA GPUs have greatly accelerated MARBL’s AMD GPU readiness.
The AMD porting work consisted of 3 main tasks: (i) compiling and linking a GPU-enabled MARBL for
AMD, (ii) configuring MARBL to dispatch runtime kernels to AMD GPUs, and (iii) achieving reasonable
levels of performance. The following paragraphs provide discussions about each of these tasks.

Several factors have aided MARBL’s building efforts, including: expertise built up over our previous
porting efforts, the BLT build system [1] (”CMake-based foundation for HPC”), and AMD’s and Cray’s use
of LLVM-based compilers for C and C++. Most aspects of the C and C++ build port have been relatively
straightforward with the exception of relocatable device code (RDC), which is needed when calling a GPU
function from a kernel in a separate compilation unit. To simplify the build, the MARBL team has chosen
to remove RDC from internal libraries that are directly controlled, by moving device function definitions
to headers in the relatively few instances where RDC was (previously) required. MARBL uses templates
sparingly and relies on the mostly robust and portable C++14 standard. This strategy has simplified the
AMD GPU build relative to more heavily templated applications and/or those that use more modern C++
standards, especially in the early days of the EAS software stacks.

Once MARBL was built with AMD GPU support, runtime capabilities were added to the source by
extending preprocessor macros to include HIP along with CUDA and by adding RAJA support for HIP to
MARBL’s forall routines. The MARBL team leveraged RAJA’s support for HIP via a series of small
updates to generalize CUDA-specific types, for example, the previously used RAJA::cuda_block_x_direct
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was replaced by device_block_x_direct. Depending on the target architecture, the latter is defined as
RAJA::cuda_block_x_direct or RAJA::hip_block_x_direct. Since the RAJA changes were confined to a few
common files, most of the source code did change at all. Umpire support for HIP required no MARBL source
changes as device allocators were abstracted behind a "DEVICE" identifier that hid CUDA and HIP specific
routines. MFEM also required no MARBL source changes except for a switch to raja-hip from raja-cuda as
the compute policy in the input files.

The kernel performance has been improved relative to Sierra by rewriting kernels to use more shared
memory, increasing the thread block/work group size of some existing shared memory kernels, and reducing
the amount of shared memory used in some existing shared memory. Further performance improvements
have been achieved by following and profiling the latest compiler runtime updates, improvements in the API
behavior consistency, and careful utilization of atomics and reducers for cases when multiple threads operate
on the same memory in a non-read-only way. Further technical details can be found in [110].

New Multiphysics Algorithms. In parallel with performance portability developments, the MARBL team
has been working on extending performant GPU capabilities beyond the ALE Hydrodynamics discussed in
[119]. As an interdisciplinary team of physicists, mathematicians, and computer scientists, the CEED and
MARBL teams developed and collaborated on new methods and algorithms that are designed with high-order
scaling on GPUs in mind.

Matrix-free remap with interface sharpening. The MARBL and CEED teams developed a novel, fully
matrix-free remap algorithm. The motivation of this works was two-fold. First, the teams had to address
the degrading ALE remap throughput performance observed in [119] and, second, the previously employed
remap framework can exhibit excess material diffusion in certain problems. The new algorithm is based
on decoupling the material velocity from the mesh motion during remap, in order to minimize material
propagation. Comparison between the new method and the existing one in terms of throughput and material
diffusion are given in Figures 27 and 28.
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Figure 27: Performance improvements achieved by switching to a matrix-free
ALE remap framework on EAS-3 (AMD MI250Xs).

Saddle point linear diffusion solver. The diffusion approximation for the transport of radiation energy
requires solving a sparse, global linear system which represents a diffusion operator acting over the entire
computational domain. MARBL uses the so-called H(div) finite element formulation for discretizing the
radiation energy diffusion equation, which requires a special type of preconditioner for efficiently solving the
linear system in a scalable manner [61]. Following the work presented in [90], the MARBL team implemented
a novel matrix-free, GPU-accelerated linear solver using the saddle-point formulation of the radiation diffusion
equations. This solver uses the interpolation-histopolation basis from [90] to form a matrix-free preconditioner
for a system that can be solved using MINRES in a number of iterations independent of the polynomial
degree or the size of the problem. Numerical results demonstrate a naïve speedup of 4.5x on EAS-3 compared
to CTS-1, although the matrix-based hybrid method continues to outperform on CPU systems.
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(a) Density comparison (b) Volume fraction comparison

Figure 28: The new matrix-free remap framework can sharpen material interfaces
and reduce material diffusion during the remap procedure. Top simulation is the
result from the matrix-free remap with interface sharpening framework. Bottom
simulation is the result from the matrix-based remap framework.

Table 3: Per node floating point (64bit) and memory bandwidth performance

CTS-1 CTS-2 ATS-2 EAS-3
2 18-core

Intel
Broadwell

2 56-core
Intel

Sapphire Rapids

4 NVIDIA
V100s

4 AMD
MI250Xs

FLOP Rate
(LINPACK)

Perf 1.09 TF/s 7.8 TF/s
(theoretical) 21.91 TF/s 141.78 TF/s

Rel
(CTS-1) 1.00× 7.16x

(theoretical) 20.01× 130.07×

Rel
(ATS-2) - - 1.00× 6.47×

Memory
Bandwidth
(STREAM)

Perf 136 GB/s 460 GB/s 850 GB/s × 4
3.4 GB/s

1.35 TB/s × 8
10.08 TB/s

Rel
(CTS-1) 1.00× 3.3× 25.0× 74.12×

Rel
(ATS-2) - - 1.0× 2.9×

Throughput Scaling Study. This section presents throughput scaling comparisons between EAS-3, ATS-
2 (Advanced Technology System 2, Sierra), and two CPU architectures, CTS-1 and CTS-2 (Commodity
Technology Systems at LLNL), described in Table 3. The corresponding throughput results on the Triple
Point benchmark are shown in Figure 29. For each architecture, the problem size is increased until the node
runs out of memory; as some architectures have more memory, some curves have more points. It is evident
that the CPU-based CTS-1 and CTS-2 saturate almost immediately, while the GPU-based ATS-2 and EAS-3
require millions of DoFs before reaching a steady state. The EAS-3’s large memory advantage allows it to
scale nearly an order of magnitude further than the existing GPU architecture, ATS-2.

4.3 ExaSMR

This section discusses our collaborative efforts between ECP’s ExaSMR (Exascale Small Modular Reactor)
and Co-design Center for Efficient Exascale Discretizations (CEED) teams. We present simulation capabilities
for ExaSMR geometries and performance analysis for neutronics and thermal hydraulics on pre-exascale and
exascale systems using ExaSMR’s ENRICO platform consisting of OpenMC, Shift and NekRS.
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Figure 29: Triple Point linear, quadratic, and cubic throughput

Figure 30: Radial temperature distribution (z = 100 cm) from coupled OpenMC–
NekRS simulations of the full-core model.

Coupled nekRS-OpenMC simulations of SMR full core. After the successful verification of the
NekRS-OpenMC coupling capability, a comprehensive simulation of an SMR full core was conducted on the
Summit supercomputer at OLCF. Each simulation job utilized 300 Summit nodes, with a polynomial order
of N = 3 for NekRS. Notably, the majority of the simulation time was dedicated to the NekRS solver, with
OpenMC running for only 54 minutes out of the total 360-minute runtime, representing 15% of the overall
computation.

Figure 30 presents the radial temperature distribution across the entire SMR reactor core at the axial
mid-plane (z=100 cm). The plot reveals distinct radial rings within each fuel pin, depicting the transitions
from the fuel region to the gap and cladding. In this comprehensive simulation, a total power of 160 MW is
deposited in the full core model, resulting in a temperature rise of 56 K (100.8 F) in the coolant flow, which
closely aligns with the design specifications of NuScale (∆T=100 F). Notably, the peak fuel and coolant
temperatures observed are 1212.0 K and 587.7 K, respectively. It is important to note that the turbulence
modeling options employed in this study are intentionally simplistic. As part of ongoing efforts to enhance
the simulation accuracy, additional simulations are planned with more sophisticated turbulence modeling and
higher resolution to evaluate and quantify the uncertainty associated with the current results.

Hybrid RANS/LES modeling. The RANS/LES hybrid approach is a novel and promising strategy that
has been introduced to enhance the simulation of a nuclear reactor core. In this approach, the core is divided
into different regions or zones, with a portion of the core simulated using Large Eddy Simulation (LES) while
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Figure 31: Multizonal mesh cross-sections of a 5×5 bundle: (a) 3×3 subchannel,
(b) 5×5 subchannel, (c) Overlapped subchannels, (d) Demonstration of zonal
hybrid approach for a rod bundle case Instantaneous velocity magnitude on a
streamwise cross section.

the remaining regions are handled by Reynolds-Averaged Navier-Stokes (RANS) modeling. This zonal hybrid
strategy aims to combine the strengths of both approaches, leveraging the accuracy and capability of LES in
resolving turbulent flow features in specific regions, while still benefiting from the computational efficiency of
RANS for the majority of the core. The preliminary results obtained for a subset of the reactor using this
approach have shown great promise, motivating further investigation and development to ultimately improve
the full core simulation without significantly increasing computational overheads. The project has pursued
two parallel methods: the first involves modeling the hybrid RANS-LES using a multizonal mesh, and the
second incorporates RANS and LES coupling through overlapping meshes, utilizing the overset mesh (a.k.a.
“neknek”) feature to achieve this ambitious goal. As an illustrative example, a relatively simple 5×5 rod
bundle is considered, and the computational grids for both the multizonal and overlapping mesh approaches
are depicted in Fig. 31 (a)–(c). These grid representations highlight the flexibility and versatility of the
hybrid approach, showcasing the potential to effectively optimize computational resources while obtaining
high-fidelity simulation results for complex reactor geometries. A demonstration of the capability is shown in
Fig. 31 (d) demonstrating a solution with RANS and LES characteristics.

ExaSMR Frontier runs. We demonstrated NekRS performance results for the full-core ExaSMR geometries
on full Frontier in earlier Section 2.1. Some earlier studies on Frontier for the ExaSMR’s 17 × 17 rod-
bundle geometries with different problem sizes were demonstrated in comparison to Crusher, Spock, Polaris,
Perlmutter, ThetaGPU and Summit in [77].

4.4 ExaWind

Through a collaboration between the ECP’s ExaWind project at the National Renewable Energy Laboratory
(NREL) and the Center for Efficient Exascale Discretizations (CEED), the Nek5000/RS team has recently
developed wall-modeled large-eddy simulation (WLES) approaches for atmospheric boundary layers (ABLs) [74,
78]. Such a capability is critical for applications such as wind farm analysis and dispersive transport in urban
canyons. Here, we discuss the governing equations for WLES in Nek5000/RS along with new subgrid-scale
(SGS) turbulence modeling approaches [78, 115]. We also present convergence results, demonstrating that
NekRS provides high-order convergence.

We also note that the modeling approaches we developed have been applied to the turbulent modeling
studies [62] that are in collaboration with Dr. Lehmkuhl’s group at Barcelona Computing Center (BSC) with
an Argonne postdoc, Vishal Kumar.

ExaWind Subgrid-Scale Modeling. To quantify the effects of numerical modeling and discretization
choices, the ABL community has set up a sequence of benchmark problems, including the GEWEX (Global
Energy and Water Cycle Experiment) Atmospheric Boundary Layer Study (GABLS) [15]. These benchmarks
represent the atmospheric boundary layer in regional and large-scale atmospheric models and are considered
important for improved modeling in the study of wind-energy, climate, and weather on all scales [98].

Exascale Computing Project (ECP) 25 CEED-MS41



For the atmospheric LES, we solve the incompressible Navier–Stokes (NS) and potential temperature
equations in a spatially filtered resolved-scale formulation. The governing equations are expressed in
nondimensional form as

∂ūi

∂t
+ ūj

∂ūi

∂xj
= −1

ρ̄

∂p̄

∂xi
− ∂τij

∂xj
+ fi (1)

∂ūj

∂xj
= 0, (2)

∂θ̄

∂t
+ ūj

∂θ̄

∂xj
= −∂τθj

∂xj
, (3)

where ūi is the ith component of the resolved-scale velocity vector, ρ̄ is the density, p̄ is the pressure, and θ̄ is
the potential temperature in the resolved scale. Here, fi accounts for the Coriolis acceleration and buoyancy
force. In the case of the high-pass filter model discussed below, fi would also include a damping term of
the form −χHPF (ui), where χ is an order-unity multiplier and HPF is a spatial filter function that allows
grid-scale fluctuations of the argument to pass through so that their amplitude is damped in time. In addition,
we have the stress tensors in the momentum and energy equations, τij and τθj , respectively, involving SGS
turbulent modeling terms:

τij = − 2
Re

Sij + τsgs
ij = − 1

Re

(
∂ūi

∂xj
+ ∂ūj

∂xi

)
+ τsgs

ij , (4)

τθj = − 1
Pe

∂θ̄

∂xj
+ τsgs

θj , (5)

where Re is the Reynolds number, Pe is the Peclet number, Sij is the resolved-scale strain-rate tensor, and
τsgs

ij and τsgs
θj are the SGS stress tensors that require modeling.

Figure 32: NekRS simulation for
the atmospheric boundary layer flows
demonstrating the potential temperature
on the vertical planes and the streamwise
velocity on the horizontal plane.

We consider the GABLS benchmark [14], illustrated in
Figure 32, which is a well-documented stably-stratified flow
problem, having the ground temperature being cooler than the air
temperature with continued cooling over the simulation duration.
The computational domain is defined on Ω = Lx × Ly × Lz =
400 m × 400 m × 400 m with the streamwise direction in x,
the spanwise direction in y, and the vertical direction in z. We
define an initial condition at t = 0 with constant velocity in the
streamwise direction equal to geostrophic wind speed of U = 8
m/s. The initial potential temperature is 265 K in 0 ≤ z ≤ 100 m
and linearly increased at a rate of 0.01 K/m in 100 m ≤ z ≤ 400
m, with the reference potential temperature of 263.5 K. An initial
perturbation is added to the temperature with an amplitude of
0.1 K on the potential temperature field for 0 ≤ z ≤ 50 m.

The Reynolds number is Re = ULb/ν, where Lb = 100 m is
the thickness of the initial thermal boundary layer and ν is the
molecular viscosity. Under the stated conditions, Re ≈ 50 M,
which precludes direct numerical simulation (DNS) wherein all
turbulent scales are resolved.

We consider periodic boundary conditions (BCs) in the
streamwise and spanwise directions. At the top boundary, (z = 400 m), a stress-free, rigid lid is applied
for momentum, and the heat flux for the energy equation is set consistent with the 0.01 K/m temperature
gradient initially prescribed in the upper region of the flow. At the bottom boundary, we use a wall model
in which traction BCs for the velocity. The specified shear stress comes from Monin-Obukhov similarity
theory [82]. For the energy equation, a heat flux is applied that is derived from the same theory and a
specified potential temperature difference between the flow at a height, z1, and the surface. For the traction
BCs for the horizontal velocity components, we followed the approaches of [45, 63] in the context of the
log-law. The normal component of the velocity as zero and the traction BCs are imposed on the tangential
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Figure 33: Horizontally averaged streamwise and spanwise velocities at t =
7h with MFEV+HPF and MFEV+SMG using traction boundary conditions,
demonstrating convergence at three different resolutions.

Strong-Scaling on Frontier, n = 5123, ∆x = 0.78 m, ∆t = 6.25e-2s, Ω = [400m]3
NekRS AMR-Wind

node GCD n/GCD vi pi Ti tstep Peff rt vi pi Ti tstep Peff rt

1 8 1.6777e+07 1 1.55 1 5.8832e-01 100 9.41 1 2 1 1.1320e+0 100 18.12
2 16 8.3886e+06 1 1.72 1 3.0980e-01 94.9 4.95 1 2 1 6.1235e-1 92.4 9.79
3 24 5.5924e+06 1 1.67 1 2.1456e-01 91.4 3.43 1 2 1 4.5652e-1 82.6 7.30
6 48 2.7962e+06 1 1.64 1 1.1294e-01 86.8 1.80 1 2 1 2.6995e-1 69.9 4.31
7 56 2.3967e+06 1 1.66 1 1.0106e-01 83.1 1.67 1 2 1 2.4527e-1 65.9 3.92
8 64 2.0971e+06 1 1.75 1 9.5191e-02 77.2 1.52 1 2 1 2.0544e-1 68.9 3.28
12 96 1.3981e+06 1 1.57 1 6.5960e-02 74.3 1.05 1 2 1 1.7106e-1 55.1 2.73
18 144 9.32067+05 1 1.67 1 5.3373e-02 61.2 0.85 1 2 1 1.4021e-1 44.8 2.24
24 192 6.9905e+05 1 1.71 1 4.6695e-02 52.4 0.74 1 2 1 1.2275e-1 38.4 1.96
48 384 3.4953e+05 1 1.65 1 3.5196e-02 34.8 0.56 - - - - - -
96 768 1.7476e+05 1 1.64 1 3.0367e-02 20.1 0.48 1 2 1 8.2161e-2 14.3 1.31
192 1536 8.7381e+04 1 1.56 1 2.9127e-02 10.5 0.46 1 2 1 7.4918e-2 7.87 1.19

Strong-Scaling on Frontier, n = 10243, ∆x = 0.39 m, ∆t = 3.12e-2s, Ω = [400m]3
NekRS

node GCD n/GCD vi pi Ti tstep Peff rt

5 40 2.6844e+07 1 1.73 1 9.6554e-01 100 30.89
7 56 1.9174e+07 1 1.62 1 6.9376e-01 99.4 22.20
12 96 1.1185e+07 1 1.62 1 4.1021e-01 98.0 13.12
20 160 6.7109e+06 1 1.66 1 2.5999e-01 92.8 8.31
24 192 5.5924e+06 1 1.80 1 2.2913e-01 87.7 7.33
54 432 2.4855e+06 1 1.65 1 1.1270e-01 79.3 3.60
60 480 2.2370e+06 1 1.52 1 1.0345e-01 77.7 3.31
64 512 2.0972e+06 1 1.58 1 9.7153e-02 77.6 3.10
96 768 1.3981e+06 1 1.82 1 7.5584e-02 66.5 2.41
192 1536 6.9905e+05 1 1.60 1 5.1362e-02 48.9 1.64
384 3072 3.4953e+05 1 1.67 1 4.2848e-02 29.3 1.37

Table 4: NekRS GPU and AMR-Wind GPU strong-scaling on Frontier for the
resolutions of 5123 (top) and NekRS strong-scaling on Frontier using resolution
of 10243 (bottom).

velocity based on the horizontally-averaged slip velocity that develops at the boundary. Further details
regarding the wall model are provided in [78].

Newly Developed Subgrid-Scale Models and Convergence. We have explored several SGS modeling
approaches for the GABLS problem including a mean-field eddy viscosity (MFEV) [112] for the anisotropic
part of the stress tensor. The law of the wall is effected through the use of the MFEV concept and the
approach originally used by [100] is used to convert the horizontally-averaged traction to local values based
on the local slip velocity in each of the horizontal directions. The isotropic part of the dissipation is provided
using either a high-pass filter (HPF) [111] or a Smagorinsky (SMG) eddy viscosity [107] applied to the
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Figure 34: NekRS and AMR-Wind on Frontier, n = 5123.

fluctuating strain-rate. Here, we present some of the basic components of these approaches and compare
their convergence behavior. Additional thermal components required for these models are presented in [78].

For the HPF approach [111], which is not eddy-viscosity based, we have

τsgs
ij = −2νT ⟨Sij⟩ , (6)

where the angle brackets ⟨ ⟩ denote averaging over the horizontal directions (at each timestep) and νT is an
average eddy viscosity, which is expressed in terms of mean flow quantities,

νT = (CKLm)2
√

2 ⟨Sij⟩ ⟨Sij⟩. (7)

Here, CK is a constant and CKLm is a mixing-length scale [112, 78]. In the HPF model, isotropic fluctuations
are damped by addition of the −χHPF (ui) term to fi, as mentioned earlier.

In our second model, we still consider the SGS dissipation effected through a non-isotropic, MFEV,
but an isotropic, fluctuating part, is taken into account through a Smagorinsky (SMG) model based on
the fluctuating strain rate. Our approach is extended from the SGS model of [112] based on the following
expression:

τsgs
ij = −2γνtSij − 2νT ⟨Sij⟩ , (8)

where also here the angle brackets ⟨ ⟩ denote averaging over the homogeneous directions and νT is an average
eddy viscosity which is expressed in terms of mean flow quantities. In Eq. (8) γ is an “isotropy factor,” which
accounts for variability in the SGS constants due to anisotropy of the mean flow. In [112], the fluctuating
eddy viscosity, νt, is obtained using an eddy viscosity model based on the SGS turbulent kinetic energy
equation [101],

νt = (Cs∆)2
√

2S′
ijS′

ij , (9)
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Figure 35: NekRS on Frontier vs. Summit, 5123 (top and second rows). AMR-
Wind on Frontier vs. Summit, 5123 (third and bottom rows). The results on
Summit are from our previous studies [78].
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Figure 36: NekRS on Frontier, n = 5123 and n = 10243.

where S′ =
√

2 ⟨(Sij − ⟨Sij⟩) (Sij − ⟨Sij⟩)⟩ and Cs =
(

Ck

√
Ck

Cϵ

)1/2
. The isotropy factor γ is obtained by

γ = S′

S′+⟨S⟩ with ⟨S⟩ =
√

2 ⟨Sij⟩ ⟨Sij⟩. (See [78, 74] for further detail.)
Figure 33 shows the horizontally averaged streamwise and spanwise velocities at t = 7h at three different

resolutions using n = 1283, 2563, 5123 which correspond to the averaged grid spacing of ∆x =3.12m, 1.56m,
0.79m, respectively. The top left shows relatively rapid convergence for MFEV+HPF, with a clearly converging
profile at n = 2563 that is very close to the one at n = 5123. The results of MFEV+SMG, while not as
converged at n = 2563 as MFEV+HPF, shows profiles that are fairly close at all three resolutions, which
implies that MFEV+SMG is perhaps more robust than MFEV+HPF. The third panel illustrates that both
models converge to the same jet height, which is an important parameter for wind-farm modeling.

ExaWind Frontier Runs. CEED NekRS team and ExaWind team at NREL previously reported scaling
performance of two CFD codes, NekRS and AMR-Wind, on Summit and Crusher for GABLS benchmark
problem in [1,2]. In this report, we extended the studies to Frontier. We demonstrate strong scaling studies
and performance analysis on Frontier, provided with comparison with previous results on Summit.

Table 4 (top) shows strong-scaling of NekRS and AMR-Wind on Frontier for the GABLS benchmark
problem using the resolution of n = 5123 (134M gridpoints) using 8–1536 GCDs. We used turbulent initial
condition at physical time 6 hours and ran 200 timesteps, and measured tstep by averaging the time from 101
to 200 steps, provided with the efficiency and the ratio of simulation time to real time, ri. NekRS shows
80% efficiency using n/P = 2M–2.3M with tstep = 0.09–0.1 seconds per step, whereas AMR-Wind shows
80% efficiency using n/P = 2.7M–5.5M with tstep = 0.26–0.45. (Here P is the MPI ranks, equivalent to the
number of GCDS.) We observe that NekRS is faster than the real time with 0.05 seconds per timestep at
61% efficiency using n/P = 0.9M. These results are demonstrated in Fig. 34 using the conventional strong
scaling with respect to the number of GCDs (left column) and the metric based on the number of grid points
per GCD, n/P (right column).

Table 4 (bottom) shows strong-scaling of NekRS on Frontier for a larger problem size n = 10243 (1B
gridpoints). We observe 80% efficiency using n/P =∼2.5M with ∼0.1 seconds per timestep.
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Figure 35 shows the performance on Frontier in comparison to that on summit for NekRS (first and
second rows) and AMR-Wind (third and fourth rows). The results on Summit are from our previous studies
reported in [1].

Figure 36 shows NekRS performance on Frontier for two different resolutions using n = 5123 and n = 10243,
shown in Table 4. The right top in Fig. 36 replots the strong-scaling information with n/P as the independent
variable. Here, we see a collapse of each code’s (conventional) strong-scaling data into a single curve for
NekRS. The efficiency plot, right bottom, clearly shows the n/P = ∼1.8M on Summit and 2.4M on Frontier
as the 80% parallel efficiency point for NekRS.

4.5 Other ECP Applications

In addition to the main CEED ECP applications described in the previous sections, CEED researchers from
the MAGMA team were also involved in helping the ExaSGD and E3SM projects in the ECP:

• The Optimizing Stochastic Grid Dynamics at Exascale (ExaSGD) application is focused on reliable and
efficient planning of the power grid, optimize the grid’s response to many potential disruption events
under different weather scenarios. In all simulations, ExaSGD employed the LDLt solvers from CEED’s
MAGMA library. Notably, MAGMA stands out as the sole stable numerical linear algebra solution for
the ExaSGD KPP2 computations.

• The Energy Exascale Earth System Model (E3SM) application is an ongoing, state-of-the-science
Earth system modeling, simulation, and prediction project that optimizes the use of DOE laboratory
resources to meet the science needs of the nation and the mission needs of DOE. The E3SM land model,
spearheaded by Dali Wang and Peter Schwartz from ORNL, has been adapted for NVIDIA and AMD
GPUs. The initial Fortran code utilized LAPACK’s dgbsv routine to address a band diagonal matrix
challenge (a compact matrix of size 7x15 with 5 bands in the compressed band format) for each land
grid cell. In its initial GPU adaptation, OpenACC was employed to offload this LAPACK function,
allowing for the parallel solving of 12,000 band diagonal matrices (encompassing a total of 6,000 land
grid cells, with two matrices each) on a singular GPU. However, this approach yields less than optimal
performance due to data transfers between the CPU and GPU. To address this, CEED’s MAGMA team
developed and released in MAGMA a batched band solution, mirroring LAPACK’s dgbsv routine, which
runs entirely on the GPU. This batched computation is highly optimized for GPUs and, furthermore,
eliminates the need for GPU-CPU data transfers [3].

5. EXTERNAL APPLICATIONS

In addition to select ECP applications the key CEED software products of MFEM, NEK, libCEED, MAGMA,
libP, OCCA, PUMI and Omega_h are being used by a growing user community external to the ECP. This
includes DOE and non DOE users including universities, research organizations and industry.

The subsections that follow provide a small sample of applications using or being built on CEED products.

5.1 Physics Equation Translator for MFEM (Petra-M)

• Application Name: Physics Equation Translator for MFEM (Petra-M)

• Application Owner: Syuníchi Shiraiwa, Princeton Plasma Physics Laboratory, shiraiwaprinceton.edu

• Application URL: https://github.com/piScope/PetraM_Base

• Sponsor(s): Department of Energy through the offices of Fusion Energy Systems (FES) and Advanced
Scientific Computing Research

• CEED Products Used: MFEM, PUMI, Omega_h

• Brief Application Description: An electro-magnetic (EM) simulation tool for modeling RF wave
propagation
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Petra-M (Physics Equation Translator for MFEM) is an integrated finite-element-method (FEM) open
source multi-physics platform [102, 104]. Petra-M was originally developed to provide a graphical user
interface to configure FEM RF simulations using MFEM.

The Petra-M framework continues to be expanded towards a full featured self-contained general purpose
FEM analysis platform, which allows for (i) creation of arbitrary geometry, (ii) mesh generation, (iii) efficient
assembly of finite element linear systems for a variety of physics partial differential equations (PDEs), (iv)
matrix solution with direct or iterative solvers, and (v) results visualization. Petra-M combines the variety of
open source libraries, a large fraction of which are being developed by Advance Scientific Computing Research
(ASCR) including Parallel Unstructured Mesh infrastructure (PUMI) (https://scorec.rpi.edu/pumi/index.php)
for mesh adaptation, Hypre (Scalable Linear Solvers and Multigrid (http://llnl.gov/casc/hypre)), MUMPS (A
Parallel Sparse Direct Solver (http://mumps.enseeiht.fr/)), and STRUctured Matrix PACKage (Strumpack)
(https://portal.nersc.gov/project/sparse/strumpack/) for the linear solver and MFEM for the FEM linear
system assembly. Furthermore, the combination OpenCASCADE (https://www.opencascade.com/) and
GMSH (http://gmsh.info) or modules of the Simmetrix Simulation Modeling Suite are used for geometry
and mesh generation. Finally, the user can set up a simulation starting from the geometry generation to the
visualization of the numerical solutions via a GUI user interface [103], which is an open-source python-based
data analysis environment.

PUMI based mesh adaptation techniques that have been integrated into MFEM [106] and are being
applied to large scale simulations of RF antenna in tokamak fusion systems. Figure shows the electric field
solved for on a adaptively refined mesh of just under one million elements Figure 37.

Figure 37: Electric field solved for on an adapted mesh of 4th order elements.

5.2 Multi-physics Integrated Simulations and Optimization (MISO)

• Application Name: Multi-physics Integrated Simulations and Optimization (MISO)

• Application Owner: Jason Hicken, Rensselaer Polytechnic Institute, hickej2@rpi.edu

• Application URL: https://github.com/OptimalDesignLab/MISO

• Sponsor: NASA

• CEED Products Used: MFEM
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• Brief Application Description: MISO is a library for partial-differential-equation-based simulation and
optimization of aerospace systems. MISO uses MFEM to simulate multi-physics problems — such as
thermal-electromagnetic motor analyses — and couples these simulations with NASA’s OpenMDAO
framework to enable multidisciplinary design optimization.

5.3 CEED-PHASTA

• Application Name: CEED-PHASTA

• Application Owner: Jed Brown, Jed.Brown@Colorado.EDU and Kenneth E. Jansen, Kenneth.Jansen@colorado.edu
both at University of Colorado Boulder

• Application URL: https://libceed.org/en/latest/examples/fluids/

• Sponsor(s): DOE, NSF, NASA

• CEED Products Used: libCEED, PETSc, MAGMA, PUMI

• Brief Application Description: Unstructured grid, compressible Navier-Stokes solver employing (SUPG/VMS)
stabilized finite elements and implicit time integration. While the same discretization approach has
been used successfully on CPUs under the PHASTA open source project, this application makes use of
CEED backends that are not only still efficient on CPUs but are very efficient and scalable to GPUs.

5.4 River Dynamical core for E3SM (RDycore)

• Application Name: RDycore: River Dynamical core for E3SM

• Application Owner: Jed Brown Jed.Brown@Colorado.EDU and Gautam Bisht <gautam.bisht@pnnl.gov>

• Application URL: https://github.com/RDycore/RDycore/

• Sponsor(s): DOE

• CEED Products Used: libCEED, PETSc

• Brief Application Description: Unstructured grid finite volume solver for shallow water dynamics
in compound flooding (pluvial, fluvial, and storm surge) with support for anisotropic meshes and
implicit/explicit integration. RDycore is being developed as a dynamical core for E3SM to be used in
century-scale climate models and for high-resolution regional modeling. Efficiency and scalability of the
CPU and GPU modes have been demonstated on Perlmutter and Crusher.

5.5 Framework for Antarctic System Science in E3SM (FAnSSIE)

• Application Name: FAnSSIE: Framework for Antarctic System Science in E3SM

• Application Owner: Matthew Hoffman, Los Alamos National Laboratory, mhoffman@lanl.gov and
Mauro Perego, Sandia National Laboratories, mperego@sandia.gov

• Application URL: https://fanssie.github.io/

• Sponsor(s): SCIDAC BER, EESM, ASCR

• CEED Products Used: Omega_h

• Brief Application Description: FAnSSIE creates an Antarctic system science capability for DOE’s
E3SM climate model by adding key missing processes for the ice sheet, ocean, and snowpack, and the
coupling between them. GPU accelerated unstructured mesh adaptation and mesh motion provided by
Omega_h is key to tracking evolving land ice sheet boundaries and to capture physical fields of interest.
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5.6 PArallel LArge-scale Computational Electromagnetics (Palace)

• Application Name: PArallel LArge-scale Computational Electromagnetics (Palace)

• Application Owner: Sebastian Grimberg, AWS Center for Quantum Computing, Grimberg, sjgamazon.com

• Application URL: https://github.com/awslabs/palace

• Sponsor(s): Amazon Web Services (AWS)

• CEED Products Used: MFEM, libCEED

• Brief Application Description: Cloud-based electromagnetics simulation tool for quantum computing
hardware

Palace is a parallel finite element code for full-wave electromagnetics simulations developed at the Amazon
Web Services (AWS) Center for Quantum Computing to perform large-scale 3D simulations for the design of
quantum computing hardware. It supports a wide range of simulation types: eigenmode analysis, driven
simulations in the frequency and time domains, and electrostatic and magnetostatic simulations for lumped
parameter extraction. As an open-source project, it is also fully extensible by developers looking to add new
features for problems of industrial relevance. An example of a Palace-based simulation result can be seen in
Figure 38.

Figure 38: 1, 4, and 21 unit-cell repetition models of a metamaterial waveguide
simulation, with engineered tapers at both ends. The 4 unit-cell repetition
(bottom) visualizes the electric field energy density, scaled by the maximum over
the entire computational domain, from the solution computed by Palace at 6
GHz.

Palace is built on top of CEED’s MFEM finite element discretization library, which provides parallel mesh
data structures supporting adaptive mesh refinement, high-performance arbitrary high-order finite element
spaces, scalable linear solvers, and more. In recent work, MFEM’s programming abstractions for single-source
support of CPU and GPU device execution and integrated memory management have enabled the porting of
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Figure 39: Configuration for laminar Hartmann flow in square duct.

Palace to GPU systems. Palace also utilizes libCEED to take advantage of the partial assembly framework for
efficient storage and application of high-order finite element operators, again on modern hardware including
various GPU backends. libCEED’s optimized CPU and GPU backends for non-tensor-product elements
enable Palace’s efficient matrix-free p-multigrid-based linear solvers for simulation models based on simplex
and mixed meshes.

5.7 Incompressible Magnetohydrodynamics (NekRS)

• Application Name: MHD

• Application Owner: Misun Min, Argonne National Laboratory, mmin@mcs.anl.gov

• Sponsor(s): CEED

• CEED Products Used: NekRS

• Brief Application Description: Turbulent MHD simulations at Exascale

We have developed an incompressible MHD solver into NekRS solving the following equations:

∂u
∂t

− 1
Re

∇2u + ∇p = B · ∇B − u · ∇u, (10)

∇ · u = 0, (11)
∂B
∂t

− σ̃

Rm
∇2B + ∇q = B · ∇u − u · ∇B, (12)

∇ · B = 0, (13)

where u is the fluid velocity, B is the magnetic field, p is the fluid pressure, and q is the magnetic pressure.
The governing equations (10)–(13) involve solving two linear Stokes subproblems per timestep with coupling
by advection-like terms on the right hand sides, which means we can reuse most of the features (fast kernels,
scalable communication, etc) existing in Nek5000/RS solvers. Here additional complication is that the domain
for B is larger than the domain for u so that the boundary conditions for B can be imposed farther away.
While NekRS is prepared for conjugate heat transfer problem with solid and fluid domains (the solid domain
is typically larger than the fluid domain), it was not tested for MHD.

Here our NS/MHD splitting scheme involves three steps: (i) explicit: tentative velocity from BDFk/EXTk
applied to nonlinear terms, (ii) implicit pressure Poisson solve + projection onto divergence-free space, (iii)
implicit viscous update (which retains ∇ · u to order of accuracy). For the explicit update, only, we can
simplify the problem by switching to Elsasser variables defined by

z+ = u + B, z− = u − B. (14)

In this case, the nonlinear terms in the explicit updates simplify to:

RHS+ = −z− · ∇z+, RHS− = −z+ · ∇z−, (15)

which means we have just two convection terms to evaluate instead of four.
We consider testing problems for an impulsively started flow in a square duct at low Reynolds number,

with applied magnetic field B0, as illustrated in Fig. 39 so that flows go only one direction. Figure 40
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Figure 40: Hartmann model problem: (Top box) velocity distribution and
(Bottom box) magnetic field distribution with applied magnetic field strength
of B0 = 10, 50 and 100. Here σ̃ = 1 on the fluid domain ΩF and σ̃ = σw is the
relative magnetic diffusivity on the side wall (ΩS − ΩF ) for the solid domain ΩS .

demonstrates the velocity and magnetic field profiles for Hartmann problem. Our Hartmann flows were
started by impulsively applying a mean pressure gradient at t = 0. As a result, the solution exhibits a ringing
response, where the flow oscillates in the axial direction as it decays to the steady-state solution as shown
in Fig. 41. We can estimate this response by looking at the most slowly-decaying eigenmode of the MHD
system, which involves sines and cosines in the x-y directions. The detailed studies can be found in [48].

5.8 Particle Tracking Simulations (NekRS)

• Application Name: Particle Tracking

• Application Owner: Misun Min, Argonne National Laboratory, mmin@mcs.anl.gov

• Sponsor(s): CEED

• CEED Products Used: Nek5000

• Brief Application Description: Efficient particle tracking simulations for dense particle systems.

We consider large-scale dense particle systems from PPICLF (parallel particle-in-cell library in Fortran)
developed by S. Balachandar and D. Zwick and explore numerical algorithms that can simulate accurately
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Figure 41: Hartmann model problem: Time history of center-point velocity for
Ha = 50, Re = 1, and Rm = 1.

Figure 42: Nek5000 four-way coupling particle tracking simulations.

and efficiently. In particular, we consider uniform distribution of dense particles in various geometries and
extend semi-implicit timestepping algorithms from Nek5000 into PPICLF for one-, two- and four-way coupling
representing fluid-particle, particle-fluid, particle-particle interaction [87]. We provide convergence studies
and demonstrate simulation capabilities using various examples. Figure 42 demonstrates four-way coupling
simulation in a slanted box shape with dense particles.

5.9 Treble Technologies Acoustics Solver for Architectural Design

• Application Name: Acoustics Solver for Architectural Design

• Application Owner: Treble Technologies

• Application URL: https://www.treble.tech
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• Sponsor(s):

• CEED Products Used: libParanumal and OCCA CEED

• Brief Application Description: Treble Technologies develops sound simulation technology and processes.

Treble Technologies develops state-of-the art software for acoustic simulations. Such simulations have a
wide variety of use cases ranging from room acoustics [95] and audio hardware design [114] to oil exploration
[83] and whale tracking [51]. At Treble, the emphasis is on the room acoustics and audio applications where
high fidelity simulations are of great value.

Figure 43: Acoustic waves attached to two of the main focuses of Treble.

Simulation algorithms: Treble’s simulation algorithms can be split into two categories. A geometrical
one (ray-based) and a numerical wave-propagation one (wave-based). The latter one is the core of Treble’s
simulation technology, but it is computationally heavy and requires sophisticated highly-parallel algorithms
to even be usable for realistic use cases.

The underlying simulation technology of the wave-based solver is called the nodal discontinuous-Galerkin
method (DGM) [53]. The DGM splits its computations into multiple local elements with element boundary
terms communicating fluxes between elements. Decomposing the wave problem into a collection of local
elements yields favorable conditions for GPU-acceleration.

At Treble, we use these methods to solve the acoustic wave-equation which can be represented by a
coupled system of equations

∂v
∂t

= −1
ρ

∇p, (16)

∂p

∂t
= −ρc2∇ · v, (17)

where v represents particle velocity, t time, p pressure, and ρ and c represent the density and acoustic velocity
in air, respectively. Solving such a problem grows in compute requirements with the resolved frequency of
the waves to the power of four meaning that resolving high-frequency wave-propagation is computationally
demanding. The audible spectrum ranges from 20 Hz to 20.000 Hz so the simulations need to cover a wide
frequency spectrum, meaning that at the high end the simulations become computationally demanding
requiring high-performance computing.

The libParanumal and OCCA CEED libraries are used in our DGM solver to facilitate discretization
and GPU-acceleration. It is common that simulations require large mesh files which need to be distributed
between multiple GPUs along with the creation of ghost layers for information exchange between GPUs, all
of this is handled efficiently by libParanumal. Thanks to these two libraries, we only need to think about the
mathematics and physics, while the parallelization and GPU implementation is abstracted away.
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5.10 Shell Performance Portable Seismic Inversion

• Application Name: (p)SWELL

• Application Owner: Shell Global

• Sponsor(s):

• CEED Products Used: OCCA

• Brief Application Description: Shell Global performance portability platform for seismic imaging.

Overview. Adapting high-performance software to various architecture while ensuring performance is a
challenging endeavor more so in the energy industry where HPC is at the inception of explorations and
production activities. Seismic exploration is not feasible without seismic imaging (Reverse Time Migration:
RTM) and velocity model building (Full Waveform Inversion: FWI) which both entirely rely on supercomputers.
With the recent advent of large offset and low frequency seismic data, the data acquired in surveys has become
ever richer and more voluminous. At the same time, a push for more detailed solutions requires the inclusion
of higher frequencies from the data. Moreover, to support extracting accurate and realistic geophysical models
of the subsurface, velocity model building such as done in FWI frequently requires inclusion of anisotropic
parameters, elastic, and viscous information. In this work, we briefly describe how we ported our existing
proprietary seismic libraries to GPUs and how this effort will work out for many other architectures.

HPC software portability. Adapting or, even better, rapidly adapting to emerging compute architectures
is non-trivial. Various constraints, not only technical, for porting codes to different architectures must be
considered:

• Size of existing body of code.

• Desired performance.

• Ease of software migration.

• Developer skills and cost.

• Risk/reward.

The topic of fully re-writing codes can be perilous in any context, and, most often the preferred route is to
undertake a carefully planned incremental refactor of existing libraries and algorithms. A common activity
nowadays consists in porting code from a latency-based architecture (CPUs) to a throughput based one
(GPUs). Many vendors now propose viable GPU or off-load compute solutions: NVIDIA, AMD, NEC, Xilinx
and Intel all have their own approach. Hence, the ability to port once and use on many architectures would be
ideal. Achieving this seamlessly directly through standard languages and compilers is still not possible at the
time of writing. To aid this process, there’s a plethora of libraries and compiler directive based approaches
available to help migrate code to different architectures see (non-exhaustive list) [85], [30], [118], [39], [84],
[46], [121], [16]. For the CPU to GPU migration, two main solutions exists, both compiler directive based,
the well-established OpenMP [118] and a more recent approach called OpenACC [30]. Nevertheless, it is
still very difficult to unleash full performance compared with native vendor APIs. In the case of OpenACC.
For instance, in an early in-house experiment, only 60% of CUDA performance was achieved using the PGI
compiler suite with special pragmas enabling shared memory usage. Similar observations were made in [34]
and ideas from [96] could not completely palliate to the performance losses. Another weakness point of
OpenACC is a lack of support across vendors. Intel does not support OpenACC while AMD and NVIDIA
both support it. Libraries such as Kokkos [39] or SYCL [46] require very good skill level in C++, something
not available in all groups. A lesser known open source alternative is the Open Concurrent Computing
Abstraction or OCCA [71, 108, 109]. It offers most of the options of the mainstream languages, but it
also allows the use of native vendor APIs. Again, in early in-house experiments with OCCA, performance
matching one of the CUDA kernels was achieved. OCCA uses an abstraction for the programming of devices,
a C extension called OKL (OCCA Kernel Language) which is designed to be vendor agnostic. OKL gets
translated in the native vendor APIs at runtime. The main vendor API supported are CUDA (NVIDIA), HIP
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(AMD) and DPC++ (Intel). Those can 1 2 3 be accessed either directly or through the OKL layer. OCCA is
mainly a Just-In-Time (JIT) approach where compute kernels are compiled when and where they are used.
JIT compilation of many kernels can be problematic. To remedy this, the packaging of often used kernels
in libraries is feasible (the runtime will look in the file for precompiled kernels) or simply pre-populating
the OCCA kernel cache with often used kernels is also a possibility. It supports lambda expression, can
be embedded in Fortran, C and C++ codes. More importantly, even with this ability to achieve excellent
performance, it is simple to use and understand.

Approach. Using OCCA we have refactored the libraries at the heart of the wave equation modeling in our
seismic codes (e.g. FWI, RTM, LS-RTM) [120], [69]. Most seismic imaging or velocity building codes can be
summarized as follows:

• A forward time-loop, with injection of source data (forcing term) propagated, using a form of the wave
equation, where snapshots for the entire simulation domain are saved (usually in compressed format
[ZFP:19]) to disk or parts of the memory hierarchy.

• A backward time-loop doing almost the same as the forward loop but where the data saved to the
disk in the previous step is either correlated or used in a gradient calculation either in-line (during
back-propagation) or offline.

The project had tight deadlines and the time given to launch the new code in production on a GPU
cluster was 12 months. Starting from zero lines of GPU code and none of the middle-ware / infrastructure
adapted to handle GPU workloads, it took about one year to have the FWI code able to run on GPUs in a
production setting. The crux of the FWI code underwent almost no changes with the refactors occurring
almost exclusively in the libraries. To be fair, the code had been correctly designed to adapt to various
plug-in libraries recently. Moving to GPUs vindicated the quality of the approach. Our approach in porting
the libraries required modifications of three main aspects:

• Finite-difference kernels (FD) (propagators),

• Traces / injection / extraction (forcing terms),

• IO, compression, snapshotting (snapshots).

Overall, for CPU kernels, the OpenMP mode was chosen and, for GPU kernels, CUDA was elected: since
the first target platform was NVIDIA hardware. A subset of CPU and GPU kernels were later translated
to OKL. Which means, for CPU like architectures, one OKL kernel is compiled in OpenMP mode while,
for GPU like architectures, another OKL kernel (written differently) is employed. Hence, to cover most of
the landscape of available CPU and GPUs, only two sets of kernels need to be maintained for parts of the
code in need of acceleration. However, each kernel needs to be tuned (e.g. blocking, thread block sizes) for
every CPU and GPU families. FD kernels solving the wave equation are known and built at start-up of the
simulation and used for many time-steps. For FD, the classical approach of [17] [18] was followed. Other
kernels are done in-place, which means, when first encountered, a compilation and run occurs while any later
time the kernel is ran from cache. How trace data is injected and extracted from the smaller GPU memory is
performed with two kernels an “inject” and a "record" one. The JIT enables to know the parameters for the
reduction at compile time improving performance and simplifying invocation [19]. Moreover, recent OBN
surveys use many source points at large offsets yielding sometimes more than a million of long (in-time)
traces (after use of the so called reciprocity theorem) that require more memory than is available on a GPU.
A double buffering approach for transferring traces to the CPU removes such limitations. Since the GPU FD
kernels are much faster than the CPU ones, the snapshots required during the gradient calculation needed
to be revisited. The IO can now overlap with computation for many GPU and CPU FWI setups. This is
performed using a thread pool on the CPU and using streams running parallel to the compute stream for
device to host transfers. Compression, necessary to manage the data volumes, either on the CPU or GPU, is
also integrated. Two libraries are used for compression ZFP [19] and Bitcomp from NVIDIA. Even though
many opportunities for acceleration of this GPU capable FWI still exists, the current approach enabled to
accelerate the workflows many times.
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Conclusions and future work OCCA enabled Shell to extend hardware support of its low-level wave
propagation and IO libraries. Those libraries are used in the preferred algorithms in production seismic
processing. The libraries support all know forms of the first-order form of the wave equation (acoustic,
elastic) with all possible anisotropies up to 21 coefficients in the elasticity tensor and has support for isotropic
viscosity. The overall effort future proofs our architecture agnostic libraries and therefore our algorithms for
years to come.

6. CEED-6.0 SOFTWARE RELEASE

The CEED distribution is a collection of software packages that can be integrated together to enable efficient
discretizations in a variety of high-order applications on unstructured grids. CEED is using the Spack package
manager for compatible building and installation of these software components. The distribution is tested on
several platforms including Linux (RHEL and Ubuntu), Mac OSX, and the representative heterogeneous HPC
machines OLCF Crusher/Frontier, LLNL Tioga and Lassen, with some packages tested on ALCF Sunspot.
See https://ceed.exascaleproject.org/ceed-6.0/ for details about native installation using Spack and
containerized use via Docker, Singularity, and Shifter.

Version CEED-6.0 released on September 30, 2023 contains 16 integrated packages ranging from low-level
modular libraries to applications, provided together within the CEED meta-package. We list these packages
below, listing some highlights for each of them since the last release. Note that many of these packages have
had more than one feature release since CEED-5.0, some of which were reported in [60]; the list below reflects
only the latest releases since CEED-5.0.

FMS-0.2 (no change)

GSLIB-1.0.6 (no change)

Laghos-3.1 (no change)

libCEED-0.12 (planned) New features in this release include:

• SYCL backend for Intel GPUs
• Support for OpenMP parallelism
• Improved memcheck debugging features
• Support for basis evaluation at particles, for use with material-point methods.
• Support for non-tensor H(div) and H(curl) spaces.
• New subgrid stress model for the fluids example.

MAGMA-2.7.2 (August 25, 2023) New additions in this release include expert interfaces for LU, QR, and
Cholesky factorizations; introduced tuning specifications for LU, QR, and Cholesky factorizations;
enhanced tuning for Ampere and later GPUs; integrated a fused LU panel for AMD GPUs; addressed
bug issues related to batched LU on singular matrices. See the MAGMA 2.7.2 release notes for further
details. Additionally, in our continuous effort to port and optimize MAGMA for Intel GPUs, the
MAGMA team has been actively updating a public MAGMA branch with SYCL support, gearing up
for an upcoming release.

MFEM-4.6 (September 27, 2023) New additions in this release include:

• NURBS meshing and discretization improvements.
• SubMesh support for H(curl) and H(div) transfers.
• TMOP enhancements and mesh optimization miniapps.
• New H(div) matrix-free saddle-point solver.
• Ultraweak DPG formulation for acoustics and Maxwell.
• Stochastic PDE method for Gaussian random fields.
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• Obstacle problem and topology optimization examples.
• k-d tree for parallel grid function repartitioning.
• HIP support in the PETSc and SUNDIALS interfaces.
• Improved GPU code debugging.
• and much more!

For more details, see the interactive documentation at https://mfem.org and the full CHANGELOG.

Nek5000-19.0 (no change)

NekRS-23.0 (May 30, 2023) New additions in this release include:

• Lagrangian phase model (one-way coupling)
• Overset grids (neknek)
• Particle tracking
• Single source udf+oudf
• Device support BoomerAMG
• Improved runtime statistics
• 4th-kind Chebyshev smoothers
• Configureable time averaging
• Extrapolation initialGuess method
• Scaleable JIT compilation
• Real gas support for lowMach
• More examples
• Various bug fixes

See the NekRS-23.0 release notes for further details.

Nekbone-17.0 (no change)

NekCEM-c8db04b (no change)

OCCA-1.6.0 (August 22, 2023) New additions in this release include:

• Enhanced multithreading support on the HOST side.
• Quality of life improvements for developers
• Support for typedef enums and enums in OKL kernels.

See the changelog for this release.

Omega_h-scorec-v10.7.0 (September 23, 2023) Adds support for a Kokkos backend with the only use
of vendor APIs (i.e., AMD HIP, NVIDIA CUDA, Intel SYCL/DPL) for stable sorting on GPUs. An
implementation of a Kokkos-based memory pool is also included. See Section 2.3 for details.

PETSc-3.20 (September 28, 2023) Changes relevant to CEED include:

• PetscDeviceContextGetStreamHandle allows sharing stream/queues between PETSc (including
Kokkos) and third-party libraries (such as libCEED) without exposing stream/queue types in the
public interface.

• Revamped profiling is more flexible and enables both traditional logging and tracing for flamegraphs.
• Variable-size point-block Jacobi vpbjacobi preconditioner setup now runs on GPUs.
• Refreshed STRUMPACK support.
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• Expanded support for libCEED via DMPlex.
• 4th kind Chebyshev smoothers.

PUMI-2.2.8 (September 21, 2023) Adds support for Gmsh v4 files, a parallel CGNS reader and writer, and
support for extruded meshes in the Simmetrix conversion utility, and improvements for the PHASTA
CFD pre processor. See the release notes for details.

Ratel-0.3 (planned) New features in this release include:

• Update strain energy function to the convex form for both Neo-Hookean and Mooney-Rivlin
models.

• Add mixed linear elasticity and Neo-Hookean hyperelastic models for incompressible materials.
• Add linear plasticity with linear hardening model for small strains.
• Add pressure boundary loading which is caused by liquids or gases on the surface of the solid

structure.
• Add flexible clamp, slip, traction, and platen boundary conditions with more complex time variance

during a quasistatic or dynamic simulation.
• Add robust surface force and surface centroid monitoring options.
• Add command-line validation options for maximum displacement and per-face centroids and surface

forces.
• Add isochoric Ogden hyperelastic model in initial configuration.
• Add mixed Ogden hyperelastic model in initial configuration.
• Add isochoric Neo-Hookean model in initial configuration.
• Add Mooney-Rivlin hyperelastic model in current configuration.
• Add Coulomb friction capabilities to platen contact boundary conditions.
• Add isochoric Mooney-Rivlin model in initial configuration.
• Add CEED benchmark problems 1, 2, 3, and 4 for convergence testing and benchmarking.
• Setup dynamic solver for mixed linear elastic and hyperelastic models.
• Setup performance and memory footprint optimizations.

Remhos-1.0 (no change)

7. ADDITIONAL TOPICS

This section covers additional research performed by the CEED team on topics such as mesh optimization,
solvers, implicit fluid simulations, performance tuning on NVIDIA GPUs and exascale simulation workflow.

7.1 CEED’s Educational Impact

The CEED project has had a significant educational impact both through its research and software products
(some of which are used to teach classes at universities, e.g., MFEM in RPI, libCEED at CU Boulder) as well
as through the numerous summer interns, graduate students and post-docs that participated in its activities.
Brief bios of these researchers are provided below.

• Dr. Anthony Austin joined the CEED team as a postdoc at Virginia Tech in 2018. He contributed
to the linear solvers and PDE solver in the libParanumal software package. He co-authored a SISC
article on initial guesses for linear solvers using stable sparse and least squares extrapolation methods
[12]. After his postdoc Dr. Austin joined the Naval Postgraduate School in Monterey as an Assistant
Professor of Mathematics in 2019.
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• Adeleke Bankole was supported through the CEED project as a postdoc at CU Boulder, where he
worked on discretizations and local Fourier analysis for high-order methods applied to wave propagation
and fluids.

• Valeria Barra was supported through the CEED Project as a postdoc at CU Boulder, where she made
numerous contributions to libCEED and developed new mini-apps for PDEs on the sphere and for
compressible viscous flow. She is now a Research Software Engineer at Caltech, working on the CliMA
project.

• Dr. Pedro Bello-Maldonado, currently a staff research scientist at IBM Research, was supported by
CEED during his Ph.D. studies at UIUC, where he developed scalable preconditioners for Poisson
problems, including a novel approach to FEM-based preconditioners for the spectral element method
[19], which forms the core of the SEMFEM preconditioner in Nek5000/RS.

• Dr. Noel Chalmers joined the CEED team as a postdoc at Virginia Tech in 2017. During his time
on the CEED project he assumed a leadership role on the libParanumal software project making
considerable contributions at every level. Dr. Chalmers has appeared as a co-author on numerous
papers resulting from his CEED related algorithmic contributions [29, 113, 57, 12, 58] and software
contributions [43, 25, 28]. After his postdoc Dr. Chalmers joined AMD Research in Austin, Texas in
2018. At AMD Research he has added a HIP backend to the OCCA portability library, enabling all
code that are built using OCCA to use AMD GPUs. He also developed a new AMD internal benchmark
code (hipBone) based on CEED BP5 and libParanumal [27]. Finally, he has also played a significant
role in the first HPL calculations to exceed an exaflop on the Frontier system at ALCF [26, 67].

• Professor Som Dutta was supported by CEED as post-doctoral researcher in the CS department at
UIUC working on scalable multiphase flow simulations. He is currently an assistant professor in the
mechanical engineering department at Utah State. His group makes extensive use of Nek5000/RS for
particle tracking applications, including aerosol tracking.

• Leila Ghaffari was partially supported through the CEED project as a PhD student at CU Boulder. Her
work included verification and validation for compressible viscous flow and hyperelasticity, derivation
of new material models with Enzyme’s algorithmic differentiation, and algebraic solvers for singular
nonlinear mechanics problems.

• Yichen Guo was partially funded through the CEED project as a graduate student at Virginia Tech.
She continues to develop new solvers based on libParanumal and she recently submitted a paper to
SISC on stopping criteria that better balance numerical discretization error and linear solver error when
using iterative methods to solve CEED bake-off problems [47]. She was also funded through the CEED
project with an appointment as 2023 Summer Intern at Argonne National Laboratory, focusing on
developing an incompressible MHD solver into NekRS [48].

• Aditya Joshi was partly supported through the CEED Project as a Ph.D. student focused on implementing
GPU based curved element, conforming mesh adaptation in MFEM.

• Dr. Ali Karakus joined the CEED team as a postdoc at Virginia Tech in 2016. During his time on the
CEED project he developed an incompressible Navier-Stokes solver as part of the libParanumal project.
His CEED related research has resulted in numerous co-author credits including [113, 57, 58, 43]. After
his postdoc at Virginia Tech Dr. Karakus took a postdoc in MCS at Argonne National Lab where
he continued to develop the incompressible flow solver. Subsequently he joined the Middle Eastern
Technical University (METU) in Turkey as an Assistant Professor of Mechanical Engineering. Dr.
Karakus has mentored numerous graduate students at METU and many have used libParanumal as a
starting point for their research.

• Yu-Hsiang Lan was funded through the CEED project as an M.S. student in CS at UIUC and as a
Visiting Student and Summer Intern at Argonne National Laboratory. His work focused on scalable
steady state solvers, extreme-scale test and development on advanced GPU architectures for Nek5000/RS
[77, 76, 72], and development of all-hex meshing tools for full-core simulations of pebble-bed reactors
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[65]. Yu-Hsiang has been responsible for pushing Nek5000/RS to the limit through extensive full-scale
tests on DOE’s leadership computers, Summit and Frontier.

• Yimin Lin was supported by the CEED project as a 2020 Summer Intern at Argonne National Laboratory
during his Ph.D at Rice University, focusing on developing a molten-salt-reactor simulations based on
the coupled Navier-Stokes and Poisson-Nernst-Planck (PNP) equations.

• Dr. Neil Lindquist was supported by the CEED project as 2020 Summer Intern at Argonne National
Laboratory during his Ph.D at University of Tennessee Knoxville. He developed fast scalable interpolation
on GPUs [66] (a GPU-based version of findpts) to support particle tracking and overset grids for various
applications including thermal fluids, bubble dynamics, and aerosol transport.

• Matthew McCall was supported through the CEED Project as an undergraduate student in computer
science and designed and implemented the Kokkos based memory pool for Omega_h.

• Aditya Parik is fully funded through the CEED project with an appointment as 2023 Summer Intern at
Argonne National Laboratory during his Ph.D. at Utah State, focusing on particle tracking simulations
for dense particle systems.

• Dr. Malachi Phillips was fully funded under CEED as a Ph.D. student in the CS department at
UIUC. In addition to being a lead developer of NekRS, Malachi made several novel developments in
high-order preconditioners, including tuned Chebyshev-accelerated Schwarz smoothers for p-multigrid
[91], 4th-kind Chebyshev smoothing with optimal V-cycles [93], and SEMFEM for NekRS. Malachi has
been a frequent intern at Sandia National Laboratories, where he now is a post-doctoral researcher.

• Thilina Rathnayake is fully funded through the CEED project as a Ph.D. student at UIUC. He worked
extensively on NekRS development and performance analysis, focusing on exascale workflows, scalable
partitioners, programming models, and highly-scalable coarse-grid solvers. Thilina has also been a
summer intern at Argonne, LLNL, and Intel.

• Dr. Morteza Siboni was partly supported through the CEED Project as a RPI postdoc and then
Research Scientist. He implemented the PUMI based mesh adaptation procedures in MFEM and
applied them to RF problems [105].

• Dr. Kasia Swirydowicz joined the CEED team as a postdoc at Virginia Tech in 2017. During her
postdoc she developed novel algorithms for the CEED bake-off kernels [113]. After her postdoc she
initially took a position at NREL on the ExaWind project and is currently a Computational Scientist
at Pacific Northwest National Laboratory.

• Jeremy L. Thompson was supported through the CEED Project as an Applied Math PhD student
at CU Boulder. Jeremy took a leading role in the development of libCEED and his thesis work also
included local Fourier analysis of high-order operators. He is now a Research Software Engineer for CU
Boulder’s PSAAP center, developing material-point methods in Ratel with libCEED and PETSc.

7.2 MFEM Hopper GH200 Benchmark Results

The benchmarks were carried out on one Grace-Hopper GH200-SXM5 superchip. The total amount of global
memory is 92 GBytes. There are 132 multiprocessors each with 128 CUDA cores. The CUDA driver 12.3
and runtime 12.2 were used to gather the results presented in figure 44.

Figure 44 presents the results of the CEED BP1 (mass) in terms of throughput (GDOF/s), depending on
the number of degrees of freedom (DOF):

• Figure 44a is on one Volta V100 on Lassen,

• Figure 44b is on one Grace-Hopper GH200-SXM5, it is the first time that this benchmark exceeds 10
GDOF/s on a single-chip.

• Figure 44c is on one Grace-Hopper GH200-SXM5, with the benchmark being entirely fused in one
kernel. Besides the improved N0.8 already presented in the CEED report MS37, this Hopper chip also
exhibits a peak rate of work per unit resource (rmax) better than the non-fused standard kernel.
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Figure 44: Performance of the CEED BP1 benchmark on one Grace-Hopper
GH200-SXM5, in throughput (GDOF/s), depending on the number of degrees of
freedom (DOF)

7.3 Multidomain Support for Overset Grids in NekRS

We have recently extended NekRS to support multiple overset grids, which significantly enhances geometric
flexibility when simulating flow in complex domains and or past multicomponent structures with moving parts.
Rotating machinery, for example, cannot be treated with ALE (arbitrary Lagrangian Eulerian) formulations
because of mesh tearing. By contrast, such configurations are easily treated with overset grids in which one
subdomain moves with respect to another.

Overset grids are effectively an extension of Schwarz overlapping methods to the full Navier-Stokes
equations. Rather than iterating between domains on individual substeps of the time advancement, we
have each domain make a full Navier-Stokes step, using time-extrapolated data on portions of the boundary
that intersect with another domain. (Iteration is used on the full linear Stokes substep, when needed for
stability.) A key requirement for an efficient implementation is to have a fast and scalable general-purpose
interpolation utility that can provide function values at arbitrary points in the computational domain. In
this way, once can extract velocity/pressure values wherever a given domain boundary lies within the overlap
region of a neighboring subdomain. In [66] we reported on fast GPU-based extensions of findpts(), which is a
highly-scalable general purpose interpolation routine tailored to spectral elements.

This recent effort builds upon earlier CPU-based work of Ketan Mittal [80], in which each subdomain
is assigned to a separate MPI rank, thereby ensuring a private memory space for each domain. The new
implementation extends the developments of Lindquist [66] to include several features that are necessary when
supporting more than two subdomains. As noted by Mittal [79], these include resolution of interpolation
“ownership” when multiple domains overlap, mass conservation across subdomain interfaces, and partition-
of-unity weight functions for computing integrals over the full domain. An important benefit of applying
Schwarz to the full Navier-Stokes equations is that one can readily use different timestep sizes in different
domains, as described in [81]. Implementation of this feature in NekRS will be supported in a future release.

7.4 Stopping Criteria

We consider the Poisson problem
−∇ · (κ(x)∇u(x)) = f(x) (18)

on a bounded domain Ω ⊂ Rd. We impose homogeneous Dirichlet boundary conditions u = 0 on ∂Ω. Here
f ∈ L2(Ω). Further, we assume there exists a constant α such that 0 < α ≤ κ(x) ∈ L2(Ω).

Let Vh represent the finite element space of piecewise polynomials of degree N on the triangulation T .
We define s as the dimension of Vh and denote by ϕn basis functions of Vh. Additionally, we refer to E as the

Exascale Computing Project (ECP) 46 CEED-MS41



set of all (d − 1)-dimensional element edges (faces in R3) of T . The finite element approximation to (18) is:
find uh ∈ Vh such that ∫

Ω
κ(x)∇uh · ∇ϕn dx =

∫
Ω

fϕn dx, ∀ n = 1, · · · , s. (19)

The approximation problem 19 is equivalent to the linear system:

Ax = b. (20)

Solving the linear system by an iterative method, we obtain xk ∈ Rs as the approximate solution to 20 at the
k-th iteration which in turn provides an approximate finite element solution uk

h =
∑s

n=1 xk
nϕn.

As a result, the total error, ∥u − uk
h∥, arises from two main sources: discretization error ∥u − uh∥ and

algebraic error ∥uh − uk
h∥. As the iteration proceeds, the algebraic error gradually decreases to zero, causing

the total error to converge to the discretization error. Ideally, the iteration should be terminated once the
discretization error is dominant in the total error. However, the stopping criterion based on relative residual
norm, ∥rk∥ ≤ τ∥r0∥, where rk = b − Axk, lacks information about discretization, which might induce
numerous unnecessary iterations. As an illustrative example discussed in [47, Section 4.2], 45 shows that after
the stagnation of the total error, the criterion requires nearly eighty additional iterations, which contributes
negligibly to improving the accuracy of finite element solution. For the purpose of both terminating the
iterative solver as early as possible and maintaining the accuracy of the finite element solution, the design of
stopping criteria in finite element frameworks has been explored in numerous papers [8, 11, 94, 56, 10, 40, 9, 86].
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Figure 45: Stopping criteria based on relative residual norm might waste
numerous iterations.

In this work [47], we introduce a new stopping criterion. The criteria, balancing algebraic and discretization
errors, can be derived directly from the linear residual. The n-th component of the linear residual rk is

(rk)n = bn − (Axk)n

= (ϕn, f) −
∑

K∈Th

(
κ(x)∇ϕn, ∇uk

h

)
K

.

Integrating the last term by parts, we obtain

(rk)n =
∑

K∈Th

(
ϕn, f + ∇ ·

(
κ(x)∇uk

h

))
K

−
∑
ℓ∈E

(
ϕn,

[(
κ(x)∇uk

h

)
· nℓ

])
ℓ
,

where [u · nℓ] is the jump of the normal component of u across the edge ℓ and nℓ is the outward normal
vector. We introduce vectors Rk, Fk ∈ Rs with the components given by

(Rk)n =
∑

K∈Th

(
ϕn, f + ∇ ·

(
κ(x)∇uk

h

))
K

and (Fk)n =
∑
ℓ∈E

(
ϕn, −

[(
κ(x)∇uk

h

)
· nℓ

])
,

respectively. Additionally, similar to the κ(x) scaling in [21], we define the weighted l2-norm of x as
∥x∥w =

(
xT Wx

)1/2. Here, W is a diagonal matrix with entries given by

Wn,n = min
x∈ωn

κ(x)−1,
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where ωn = supp (ϕn).
With the above considerations, we propose an indicator ηRF,

ηRF := ∥Rk∥w + ∥Fk∥w, (21)

with the associated stopping criterion:
∥rk∥w ≤ τ ηRF.

The indicator ηRF provides an upper bound for the w-norm of the residual without any unknown constants
involved. Ideally, ηRF closely tracks ∥rk∥w until the total error converges, and the separation between ∥rk∥w
and ηRF should indicate the deviation of the total error from the algebraic error. Furthermore, it is only
necessary to compute Rk; Fk = rk − Rk can be directly calculated once Rk has been determined.

To demonstrate the effectiveness of the stopping criterion,we consider the Poisson equation on a L-shaped
domain with highly variable piecewise constant coefficients. As shown in 46, the domain Ω is partitioned
into four subdomains and κ(x) is constant on each subdomain. We solve the linear system by the conjugate
gradient algorithm and set τ = 1/20. In 47, the total error becomes stagnant around 140th iterations. During
the initial iterations, the indicator ηRF follows ∥rk∥w. The separation of ηRF and ∥rk∥w coincides with the
stagnation of the total error, halting the iteration at a reasonable point, as highlighted by the arrow.

Figure 46: Domain Ω and coefficient κ(x).
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Figure 47: Convergence history with N = 6.

To measure the reliability of a stopping criterion, we define the quality ratio of a criterion as

quality ratio := ∥u − uk∗

h ∥
∥u − uh∥

, (22)

where uk∗

h is the first solution that satisfies the stopping condition during the iterative process. 5 presents
numbers of iterations and quality ratios resulting from applying stopping criteria to the solution with
N = 4, 6, 8. In contrast to the criterion based on the relative residual norm, the proposed criterion terminates
iterations much earlier. Meantime, the small quality ratios indicate the reliable accuracy of the finite element
solution.

Table 5: Numbers of iterations (iter) and quality ratios (qual. (22)).

Criterion N = 4 N = 6 N = 8
iter qual. iter qual. iter qual.

∥rk∥w ≤ τηw
RF 70 1.13 131 1.14 201 1.26

∥rk∥ ≤ 10−6∥r0∥ 149 1.00 256 1.00 390 1.00

7.5 Fast Coarse Grid Solvers

We consider development of coarse grid solvers tailored to exascale architectures for the pMG preconditioner
[68, 6, 54, 92] used in the solution of the pressure Poisson problem that arises when simulating unsteady
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incompressible flow with spatial discretization based on the Spectral Element Method (SEM) [33, 89]. Pressure
Poisson equation is usually solved in a form similar to the following at each timestep of an incompressible
flow simulation:

− ∇2ũ = f in Ω (23)

with boundary conditions ũ = 0 on ∂ΩD and ∇ũ · n̂ = 0 on ∂ΩN , where ∂ΩD and ∂ΩN are respective Dirichlet
and Neumann boundaries. For SEM or finite element methods (FEM), the discretization is based on the
variational formulation: Find u ∈ XN

0 ⊂ H1
0 such that

a(v, u) =
∫

Ω
vf dV, ∀v ∈ XN

0 , (24)

where the inner product a(v, u) and function space H1
0 are defined as:

H1
0 =

{
v

∣∣∣∣ ∫
Ω

∇v · ∇v < ∞,

∫
Ω

v2 < ∞, v = 0 on ∂ΩD

}
(25)

a(u, v) =
∫

Ω
∇u · ∇v dV (26)

We also define a-norm associated with the H1
0 as:

∥u∥a =
√

a(u, u) =
[∫

Ω
∇u · ∇u dV

] 1
2

. (27)

The discretization of (24) starts with the choice of the finite-dimensional approximation space, XN
0 ⊂ H1

0,
and a corresponding basis. For the SEM, functions in XN

0 are expressed as the sum of Lagrange interpolating
functions ϕi(x) satisfying ϕi(xj) = δij , where δij is the Kronecker delta function and the xj ’s are the function
nodal points,

u(x) =
n∑

j=1
ujϕj(x). (28)

Out of all functions in XN
0 , u minimizes the error ũ − u in a−norm defined in (27). Approximating u and v

by expansion of the basis functions ϕi as in (28) and variational form (24) using a suitable quadrature rule,
we get the linear system Au = b where:

Aij = a(ϕi, ϕj), bi = (ϕi, f). (29)

Iterative methods like GMRES [99] and conjugate gradients are used to solve Au = b with multilevel
preconditioners to accelerate the solution process. For the SEM, pMG is widely used as a preconditioner for
these iterative methods. pMG consists of series of L nested spectral element spaces with l = 1 the coarsest
mesh and l = L the finest mesh. The discretization approach across the levels is essentially unchanged, save
for the order of the basis functions, which usually vary as Nl+1 = 2Nl with N1 = 1 and NL = N . If l > 1, a
pMG sweep usually involves smoothing followed by restriction to the next coarser level when going “down” the
V-cycle, or smoothing followed by prolongation (interpolation) to the next finer level when going up. With
the tensor-product basis of the SEM, all operators can be applied element wise with fast tensor-contractions
expressed as matrix-matrix products [33]. The method is efficient since tensor-product operations require
only O(N3

l ) memory references and O(N4
l ) work per element for meshes with l > 1. These structured

(tensor-product) work on the local meshes accounts for the majority of the floating-point operations (flops)
and solving (or relaxing on) the communication-intensive unstructured element-vertex mesh (i.e., l = 1 or
N1 = 1), referred to as the coarse grid, accounts for the majority of the communication since the coarse grid
system, denoted by Acuc = bc requires all-to-all communications as the inverse A−1

c is completely full.
It is well known that the coarse grid solve is challenging in a parallel setting when the number of processes,

P , is large since the coarse grid solve is the only operation in the solution of elliptic partial differential
equations (PDEs) whose cost increases with P [41]. As P increases, the coarse grid solve invariably sets
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the limits on strong-scaling, which directly impacts time-to-solution in many applications. For pMG on
tensor-product element meshes with E elements, the coarse grid size is nc ≈ E. This has become a major
bottleneck since current exa- and pre-exascale platforms routinely enable simulations with E = 108–109

resulting in very large coarse grid systems. The importance of the coarse grid solve for exascale applications
is illustrated in [73], where it accounts for 45% of the flow simulation time when running on P = 27 648
Nvidia V100 GPUs on the Summit supercomputer at Oak Ridge National Laboratory. In this case, the
Navier-Stokes problem has E = 98 million elements of order N = 8 leading to n = 51 billion degrees of
freedom (or DOFs) and the coarse solve in the pMG-preconditioned pressure Poisson problem uses a single
V -cycle of BoomerAMG [52].

We present an approach to reduce communication for the N = 1 coarse solve Acuc = bc on P processors
by introducing a low-communication two-level overlapping Schwarz smoother with a novel non-nested coarse
space as an alternative to AMG as a coarse grid solver in pMG preconditioners. The key ingredients of the
proposed method are:

• Overlapping or non-overlapping domain decomposition using a parallel graph partitioner like parRSB [88].

• Local additive Schwarz (AS) to smooth the Level 1 error on each processor.

• A non-nested coarse grid space for the Level 1 problem, comprising ≈ P DOFs.

We start by partitioning the original coarse gird Ω into P non-overlapping sub-domains Ωp (p = 1, . . . , P )
using parRSB [88]. Even though the sub-domains are non-overlapping, some DOFs on the sub-domain
boundaries are shared between different sub-domains and has to be handled accordingly during the sub-
domain solve to ensure the continuity of the solution. Let Ωp, 1 ≤ p ≤ P be the extended domain that
include the original elements in Ωp and the set of elements that share at least one DOF with the element
boundary ∂Ωp. For the local subdomain problem, Dirichlet boundary conditions are applied on ∂Ωp.

The main idea of Schwarz methods is to solve a local problem in each domain and then combine the
solutions to generate the approximate solution. The preconditioner is realized by defining a restriction
operator Rp from functions in X1(Ω) to X1(Ωp) or, in other words, from vectors in Rn to vectors in Rnp ,
where n = dim(X1(Ω)) and np = dim(X1(Ωp)). We use order 1 finite element basis functions for the
discretization of Acuc = bc on subdomains, which is represented by superscript 1 in function space X1. The
local AS preconditioner with only the local subdomain solves can then be written as:

M−1
AS,1 =

P∑
p=1

RT
p A−1

p Rp, where Ap = RpART
p . (30)

The Level 1 overlapping systems Ap, 1 ≤ p ≤ P in Eq (30), (size = O(E/P ) ≈ 8000 based on the strong
scaling limit of the GPU based systems like Frontier and Summit) are highly localized and well suited to
parallel computation yielding full P -fold parallelism. In our implementation, we use CHOLMOD [31], a fast
sparse Cholesky solver to solve the local systems Ap locally on each processor.

Bounded convergence of the local AS preconditioner is achieved by adding a coarse grid correction. Assume
we have a low-dimensional coarse space Y 1 =span {Φ1, Φ2, . . . , Φnr } associated with a set of basis functions,
Φj(x) that can represent “smooth” (i.e., low wave number) functions on Ω (we will show how we construct
this space soon). Let J be an interpolation (prolongation) operator that maps coarse-space coefficients ur

j ,
j = 1, . . . , nr to their fine-scale (Level 1) counterparts, uc

i (Eq (28) with N = 1), i = 1, . . . , nc. Because the
unknowns associated with A are grid-point values (the basis for X1 is a set of Lagrangian interpolants on
nodal points xi), we have

(J)ij = Φj(xi). (31)

Following the standard Galerkin formulation, which ensures that our coarse approximation in Y 1 is the best
fit in a-norm, the coarse-grid solution is:

u = JA−1
r JT b, Ar := JT AJ. (32)

With this global coarse correction the two-level Schwarz method becomes

M−1
AS,2 = M−1

AS,1 + JA−1
r JT . (33)
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Figure 48: Strong scaling study of 45000 pebbles mesh with NekRS. Left to right:
Navier-Stokes, Pressure and Coarse grid solve time per timestep for AMG and two
level Schwarz method; Parallel efficiency for AMG and two level Schwarz method;
Breakdown of the coarse grid solve time for the two level Schwarz method.

Identifying a coarse grid is a significant challenge for multilevel methods on unstructured grids. Common
approaches like aggregation, smoothed-aggregation, and fine-coarse (FC) splittings only use the algebraic
information of the system. In the PDE context, one also has important geometric information associated with
the system; namely, that the basis coefficients ui represent the unknown solution at particular points in lRd

where d is the space dimension. With this information, one can construct spaces of low-energy functions based
on simple structured grids. Let Ωr ⊃ Ω be a box-shaped coarse domain having Er = Ex ×Ey ×Ez elements in
3D or Er = Ex × Ey elements in 2D. We define tri (or bi-) linear interpolants on these box meshes. The nodal
values at the vertices of the boxes are the new coarse-space unknowns. With J the coarse-to-fine interpolation
matrix defined earlier, the governing coarse-space equation is derived using the standard Galerkin approach
as Ar = JT AJ . This non-nested (reduced) coarse space requires only a few DOFs per process (denoted by γ)
and the corresponding reduced system Arur = br (size nr = γP = O(P ) ≪ E, γ = 1–10), is solved using the
communication-minimal XXT algorithm developed in [44, 117]. Thus, this new method reduces the coarse
grid system size from O(E) to O(P ).

Figure 48 shows timing data for a strong scaling study of the new two level Schwarz preconditioner and
AMG using 45000 pebbles mesh with NekRS [42]. For the AMG, we used BoomerAMG [52] which is the
standard coarse solver in NekRS. The plots were generated by collecting timing data by increasing the number
of processes, P , from 840 to 10080 (or decreasing local problem size). We can see that Navier-Stokes solve
time, pressure solve time and coarse grid solve time per timestep goes down faster with the two level Schwarz
solver compared to AMG as the number of processes increase in the leftmost plot in Figure 48. Crossover
point where the two level Schwarz solver becomes faster than the default AMG approach is ≈ 3.5 × 106 DOFs.
Middle plot of Figure 48 shows the parallel efficiency for the two solvers as local problem size decreases.
Reference point for the parallel efficiency is the NekRS run with BoomerAMG solver with P = 840 which is
assumed to have 100% parallel efficiency.

Right most plot in Figure 48 shows the breakdown of the coarse grid solve time for the two level Schwarz
solver. Cost of the operations which don’t involve communication goes down noticeably as local problem size
decreases. These include the local Schwarz solve (A−1

p ), right hand side update (r − Azloc, zloc = M−1
AS,1r)

required for doing reduced solve in a multiplicative manner and interpolation (J) from the original coarse
space Ac to the reduced structured space Ar. Note that in the case of J and JT , it is the structured nature
of Ar which allows us to compute the interpolation and prolongation in parallel with no communication. The
fact that the local Schwarz solve is the most expensive operation in the two level Schwarz for most of the
range presents an opportunity for further optimizations. Cost of solving the reduced system A−1

r stays more
or less the same as local problem size decreases. This is not surprising since the size of this system is fixed for
the entire study.
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Figure 49: NekRS In situ visualization using Ascent for simulating 146 pebbles.

7.6 NekRS In-Situ Visualization

In the realm of Computational Fluid Dynamics (CFD), the demand for memory and computation resources
is extreme, necessitating the use of leadership-scale computing platforms for practical domain sizes. This
intensive requirement renders traditional checkpointing methods ineffective due to the significant slowdown
in simulations while saving state data to disk. As we progress towards exascale and GPU-driven High-
Performance Computing (HPC) and confront larger problem sizes, the choice becomes increasingly stark: to
compromise data fidelity or to reduce resolution. To navigate this challenge, it is critical to consider in situ
analysis and visualization techniques. These allow more frequent data “snapshots” to be taken directly from
memory, thus avoiding the need for disruptive checkpointing.

In collaboration with Argonne scientist, Victor A. Mateevitsi, we have integrated NekRS with SENSEI
and Ascent infrastructure to support in situ visualization capabilities. For SENSEI, a PR (pull request) is
available at https://github.com/Nek5000/nekRS/pull/528 with a related paper titled “Scaling Computational
Fluid Dynamics: In Situ Visualization of NekRS using SENSEI” [70] which will be presented at the ISAV 2023
workshop of SC23 in November 2023. These enhancements aim to allow for scalable and efficient visualization
of CFD simulations directly within NekRS and reduce post-processing efforts and storage requirements.
In [70], tests were conducted with 146 pebbles for 3000 timesteps with 100 timestep intervals running on
70 nodes (280 ranks), 140 nodes (560 ranks), and 280 nodes (1120 ranks) on ALCF Polaris. The storage
demand was a mere 6.5MB in contrast to 19GB necessitated by conventional checkpointing.

Figure 49 demonstrates preliminary experiment performed on Frontier using 1 node (8 GCDs) for 146
pebbles (E = 62132, N = 9, and the total number of gridpoints n = 45M; 5.M gridpoints per GCD) using
Ascent (version 0.80). Two configurations with clip and slice were used defining contour on pebble at velocity
magnitude = 0.4, with clip radius < 0.6 and call Ascent’s function every 20 timesteps, and directly render on
device and only save images. The output size per IO-step by default checkpointing is 1.1GB, compared to the
Ascent image 4MB. The PR for the integration of NekRS with Ascent will be soon available as a next step.

8. OTHER PROJECT ACTIVITIES

8.1 2023 Gordon Bell Finalist

Several CEED members, Paul Fischer, Misun Min, Stefan Kerkemeier, Yu-Hsiang Lan, Malachi Phillips,
Thilina Rathnayake, Noel Chalmers, and Tim Warburton, are 2023 Gordon Bell Finalist for their contributions
to “Exascale Multiphysics Nuclear Reactor Simulations for Advanced Designs.”
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8.2 2023 R&D100 Award Winner

Two CEED members, Misun Min and Paul Fischer, are 2023 R&D 100 Award Winners for their contributions
to “Cardinal: Accelerating Discovery in Fusion and Fission Energy" with ANL and INL nuclear engineers.

8.3 Seventh CEED Annual Meeting

The CEED project held its seventh annual meeting August 1-3, 2023 in a hybrid format: in-person at Lawrence
Livermore National Laboratory and virtually using ECP Zoom for videoconferencing and Slack for side
discussions with participation from 112 researchers (70 in-person) from 38 different organizations. The goal of
the meeting was to report on the progress in the center, deepen existing and establish new connections with
ECP hardware vendors, ECP software technologies projects and other collaborators, plan project activities
and brainstorm/work as a group to make technical progress. In addition to gathering together many of
the CEED researchers, the meeting included representatives of the ECP management, hardware vendors,
software technology and other interested projects. See the meeting page at https://ceed.exascaleproject.
org/ceed7am and this summary article https://computing.llnl.gov/about/newsroom/ecp-ceed-2 for
additional information.

8.4 SIAM-CSE, ParCFD, ICOSAHOM and ATPESC Participation

The CEED team organized two minisymposia at the SIAM Conference on Computational Science and
Engineering (CSE23), inviting 16 speakers from various institutions in US and Europe. We also participated
in the numerical libraries day of ATPESC and organized a minisimposium at the International Conference on
Spectral and High Order Methods, where CEED had two members on the organizing committee and Misun
Min presented one of the plenary talks. A CEED member, Misun Min, delivered the opening keynote talk,
titled CFD at Exascale, at ParCFD 2023, held in Cuenca, Ecuador.

8.5 MFEM Tutorial on AWS

The MFEM team held its second cloud computing tutorial as part of LLNL’s RADIUSS AWS tutorial series.
The tutorial provided a self-paced overview of MFEM and its use for scalable finite element discretizations
and application development. More than 40 participants followed the web-based lessons in their own Amazon
EC2 instances. See the tutorial page at https://mfem.org/tutorial for additional information.

8.6 MAGMA Paper at SC23

The MAGMA team will participate and represent the CEED project at SC’23. A paper on GPU-based LU
Factorization and Solve on Batches of Matrices with Band Structure [3] is accepted and will be presented
in the 14th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Heterogeneous Systems
(ScalAH’23).

8.7 ANL-BSC Collaboration for Turbulence Modeling

The Nek team at Argonne collaborates with a team at Barcelona Supercomputing Center (BSC) for turbulence
modeling, which was extended from the development work that came out from the CEED–ExaWind
collaboration. The research outcome between ANL and BSC has been reported in [62].

9. CONCLUSION

The goal of this milestone was to document and popularize the CEED-developed software and standards as
part of the completion of the CEED efforts.

In addition to a final report on the CEED work for Frontier, Aurora, and ECP applications, this milestone
included developments to engage external applications in the DOE and industry, the public release of
the CEED-6.0 software distribution and the next CEED Annual meeting (CEED7AM) which included
representatives from ECP applications, vendors and software technology projects.
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