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EXECUTIVE SUMMARY

The goal of this milestone was to support ECP applications in the preparation and execution of their exascale
challenge problem runs. We focused on multi-node scaling Frontier (both strong and weak scaling) and
performed additional developments to help CEED-enhanced applications to achieve their planned FOMs.

As part of this milestone, we also ported/optimized the CEED software stack, including Nek, MFEM and
libCEED to Aurora and El Capitan early access hardware, worked on optimizing the performance on AMD,
NVIDIA, and Intel GPUs, and demonstrating impact in CEED-enabled ECP and external applications.

The specific tasks addressed in this milestone were as follows.

• CEED-T25 (ADCD04-95): Multi-node scaling on Frontier

• CEED-T26 (ADCD04-96): Porting and optimizations for Aurora

• CEED-T27 (ADCD04-97): Porting and optimizations for El Capitan

• CEED-T28 (ADCD04-98): Help ECP applications meet their FOMs
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1. INTRODUCTION

The goal of this milestone was to support ECP applications in their exascale challenge problem runs. We
will focus on multi-node scaling runs on Frontier (both strong and weak scaling) and perform additional
developments to help CEED-enhanced applications to achieve their planned FOMs.

As part of this milestone, we also ported/optimized the CEED software stack, including Nek, MFEM and
libCEED to Aurora and/or El Capitan early access hardware, and worked on optimizing the performance on
AMD and Intel GPUs, and demonstrating impact in CEED-enabled ECP applications.

These activities are described in Section 2 and Section 3. Additional NDA material from runs on Sunspot
are available in 6.

2. CEED PERFORMANCE ON FRONTIER, AURORA, AND POLARIS

2.1 Matrix Core Instructions on MI250X

In this section we describe progress in exploiting the AMD MI250X GPU matrix-cores for improving the
efficiency of CEED BK (bakeoff kernels). To do so we developed implementations of the CEED BKs using the
specialized matrix-fused-multiply-accumulate (mfma) instructions to perform double precision matrix-matrix
multiplication operations. Normally these instructions are used to access 512 registers per thread instead
of the usual 256 registers (i.e. to allow for more registers per thread) and to attain higher peak floating
point performance than the regular vector (SIMD) operations. However, we actually used these instructions
because the matrix-cores are able to access registers across SIMD lanes, bypassing the shared memory bus on
each compute unit.

In Table 1 we show theoretical estimates for the double precision arithmetic intensity of the CEED BK
(bakeoff kernels). We note that the arithmetic intensity of each of the kernels increase approximately linearly
with polynomial degree (N), and do not exceed 11 for all kernels considered up to polynomial degree N = 15.
Indeed the scalar (odd) BKs do not exceed arithmetic intensity of 7. This provides some context for the part
of the roofline model these kernels operate in, namely the relatively low arithmetic intensity and memory
bound regime.

Arithmetic intensities (flops/byte)
N BK1 BK2 BK3 BK5 BK6
1 1.28 3.1 1.13 0.55 0.67
2 1.75 3.78 1.44 0.71 1
3 2.2 4.38 1.76 0.87 1.33
4 2.64 4.97 2.07 1.03 1.67
5 3.07 5.55 2.38 1.19 2
6 3.51 6.14 2.7 1.35 2.33
7 3.94 6.73 3.01 1.5 2.67
8 4.37 7.32 3.33 1.66 3
9 4.8 7.92 3.64 1.82 3.33
10 5.23 8.52 3.96 1.98 3.67
11 5.66 9.11 4.27 2.14 4
12 6.09 9.71 4.59 2.29 4.33
13 6.52 10.31 4.9 2.45 4.67
14 6.95 10.91 5.22 2.61 5
15 - - - 2.77 5.33

Table 1: Double precision arithmetic intensity (in flops/byte) of representative
CEED bakeoff kernels.

To give more context we illustrate the roofline model for a single GCD of the AMDMI250X GPU in Figure 1.
The top half of the roofline diagram is only accessible when using the CDNA2 builtin amdgcn mfma f64 16x16x4f64

intrinsic that performs a (16× 4)× (4× 16) matrix-fused-multiply-add (mfma) operations and does so at

Exascale Computing Project (ECP) 1 CEED-MS40
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Figure 1: Roofline model for a single MI250X GCD. The quantized color scheme
illustrates the data burden regimes (in megabytes) for a kernel to achieve the
arithmetic throughput (vertical axis) at each arithmetic intensity (horizontal
axis). This roofline was empirically calibrated using a nominal throughput of
1.2TB/s achieved by streaming kernels in the bakeoff streaming (BS) benchmark
suite developed using the libParanumal library with kernels developed using the
performance portability library OCCA. The upper half of the roofline diagram
(illustrated by the grey box) is only accessible when using the CDNA2 double
rate matrix-core instruction.
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“double-rate” with theoretical peak throughput of approximately 48 TFLOPS per GCD. The output of this
operation is a (16× 16) matrix, requiring each of the 64 threads in the wavefront executing the instruction
to dedicate four FP64 registers variables to the result. In practice we did not find it expedient to use this
instruction.

The second matrix-core intrinsic instruction builtin amdgcn mfma f64 4x4x4f64 performs four (4× 4)×
(4× 4) mfma operations and does so at “single-rate” with theoretical peak throughput of approximately 24
TFLOPS per GCD. We have found this to be extremely effective when tuning the CEED BK kernels at
high-order. Although it has the same peak throughput as the vector instructions it incurs significantly less
shared memory bus traffic when performing the matrix-core instruction than when doing the same operation
using a vector variant that uses shared memory arrays.

HBM bandwidth (GB/s)
BK1 BK2 BK3 BK5 (AMD) BK6

N FP64 FP32 FP64 FP32 FP64 FP32 FP64 FP32 FP64
1 1286 870 1088 865 982 996 1127 1153 945
2 1224 1087 1113 976 951 937 983 1024 857
3 1177 949 979 765 1013 867 1082 1124 920
4 1134 1016 889 700 1026 901 1006 1027 781
5 1036 980 777 679 988 847 999 998 794
6 1023 1001 777 691 1037 992 1020 966 728
7 987 1022 597 545 958 961 1061 1091 913
8 897 904 567 506 974 924 1017 942 557
9 1010 892 533 470 1040 908 1006 953 676
10 830 798 707 370 1033 864 1080 945 732
11 778 766 630 372 1000 830 1113 973 845
12 843 748 690 416 965 791 1125 985 582
13 883 673 775 459 1086 913 1071 999 684
14 937 669 772 491 1018 948 1131 1065 653
15 - - - - - - 1144 1091 774

Table 2: Maximum achieved throughputs for BK kernels in single-precision
(FP32) and double-precision (FP64). When a kernel that only uses vector
instructions achieved the highest throughput the result is shown in black. If a
kernel that uses matrix-core instructions achieved the highest throughput the
result is shown in red.

In Table 2 we show the maximum throughputs for BK1,2,3,5,6 attained in single and double precision
across incrementally optimized families of kernels. The results shown in red indicate that a kernel using
matrix-core instructions achieved the highest throughput of all kernels tested. It is immediately apparent
that for higher polynomial degrees in both double and single precision the best performing kernels tend to be
the matrix-core based versions. This is even the case where the 4× 4 batch multiplies do not neatly tile the
tensor-contractions in the CEED BKs and we had to resort to padding by zero. Finally, it is also interesting
that the best kernels exceed 1TB/s at high orders and are close to the critical performance limitation of
the MI250X GCD, namely between 1TB/s and 1.2TB/s depending on the specific details of the kernel read
and writes. The single-precision kernels with relatively low streaming throughput are actually achieving
10TFLOPS in some cases at high-order.

This work was initiated by the AMD Research team including Damon McDougall and Noel Chalmers
who developed the matrix-core accelerated BK5 kernels for polynomial degree N = 15. The Virginia Tech
CEED teem continues to work with the AMD Research team to improve the performance of all CEED BK
kernels for all precisions and polynomial degree.

2.2 Performance improvement for the non-tensor MAGMA backend

The non-tensor basis actions in libCEED can be implemented using a sequence of (batch) general matrix
multiplications (GEMMs). Standard math libraries often provide highly optimized GEMM kernels. However,
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there could be a room for improvement for very small sizes arising from low order problems, where such math
libraries may not be properly tuned. In this regard, the MAGMA team has developed customized kernels
to perform the non-tensor interpolation and gradient basis actions in libCEED. The kernels are based on
the three assumptions. First, only two variants of the GEMM operation are assumed, either C = A×B or
C = AT ×B. Second, the matrix A is small enough to be cached either in the shared memory or the register
file of the GPU. Third, the B and C matrices are wide enough to be subdivided into smaller matrices of the
same height and the same smaller width. Each sub-matrix is assumed to fit in the shared memory or the
register file of the GPU. This can be achieved through the subdivision size (or blocking size nb). The value
nb is a control parameter that can be tuned based on the width of B and C.

B

C0

C1

C2

n = nelem ✕ ncomp

A0TP

Q

A1T

A2T

⨉

⨉

⨉

n = nelem ✕ ncomp

3D Nontranspose Gradient Basis Action

Figure 2: Non-transpose gradient basis action as a sequence of GEMMs for 3D
problems

B0

C

n = nelem ✕ ncomp

A0P

Q
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A2

⨉

B1⨉

B2⨉

+

+

3D Transpose Gradient Basis Action

Figure 3: Transpose gradient basis action as a sequence of GEMMs for 3D
problems

According to the libCEED implementation, a non-tensor interpolation basis action is performed using a
single GEMM operation, while a gradient basis action consists of a sequence of GEMM calls. Figure 2 shows
the sequence of calls for a non-transpose gradient action in 3D problems. All three GEMMs are independent
from each other, and can all be done in parallel. However, we assume that B and C are wide enough to
provide sufficient parallelism to the GPU. This is why our design uses a single thread-block (TB) to cache
a sub-matrix of B for the lifetime of the kernel, and read A0, A1, and A2 (one at a time) to perform the
corresponding GEMM operations. A transpose gradient action is shown in Figure 3, where a reduction
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operation is required across the three GEMMs to obtain the output matrix C. For this kernel, a single thread
block caches a block of C for the lifetime of the kernel. Each TB performs three multiplications in order, while
accumulating the results in the register file. We can observe that, in both kernels, the B and C matrices are
either read or written once, which is optimal for the memory bandwidth. There are, however, redundancies
in reading the A matrices, since each TB keeps its own copy locally. We believe that these redundancies have
a minor effect on performance, since A is usually smaller enough to remain in the L2 cache of the GPU.
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Figure 4: Performance of the MFEM 3D diffusion benchmark using the MAGMA
non-tensor backend. Left is the old MAGMA backend using standard math
libraries. Right is the current backend using customized kernels. Results are
shown on an A100-SXM4 GPU using CUDA-11.2

The new kernels have been successfully integrated into libCEED, and have been tested using the MFEM
benchmark for a 3D diffusion problem. The kernels are compiled at run time using nvrtc for NVIDIA GPUs,
or hiprtc for AMD GPUs. Performance results are shown for an NVIDIA A100-SXM4 GPU (Figure 4) and
for an AMD MI250x GPU (Figure 5). The performance improvements are observed only for orders up to
4. Larger order would require a more general blocking strategy. The asymptotic performance speedup on
the A100 GPU are 3.85× for order 1, 1.92× for order 2, 1.53× for order 3, and 1.17× for order 4. On an
AMD MI250x GPU, the asymptotic speedups are 1.97×, 1.48×, 1.3×, and 1.15×, for orders 1 through 4,
respectively.

The blocking size nb is the only tuning parameter for the new non-tensor kernels. The MAGMA team has
conducted off-line benchmark sweeps (using nvcc and hipcc) on both the A100 and the MI250x GPUs to
determine the best value of nb for a given problem. The benchmark sweeps use the problem sizes encountered
in the MFEM benchmark, and the results are tabulated in C++ structures that are looked up during the
run-time compilation of the kernels.
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Figure 5: Performance of the MFEM 3D diffusion benchmark using the MAGMA
non-tensor backend. Left is the old MAGMA backend using standard math
libraries. Right is the current backend using customized kernels. Results are
shown on an AMD Instinct MI250x GPU (single GCD) using ROCM-5.2
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2.3 SYCL backend for libCEED

Development of a SYCL backend for libCEED began in January 2023. Led by staff at ALCF, this effort has
made considerable progress and the accuracy of an initial reference implementation was verified on Sunspot
and the JLSE Aurora testbed. The next phase of the project will focus on incorporating the type of kernel
fusion used in the CUDA and HIP backends, as well as performance optimization. The libCEED SYCL
backend will be used by the PHASTA ESP projects to meet their objectives on Aurora.

A significant engineering hurdle in the design of the libCEED SYCL backend was incorporating JIT
compilation. Unlike CUDA and HIP, which have runtime compilation libraries, the current SYCL standard
only supports JIT compilation indirectly. For example, using SYCL specification constants it is possible to
define loop bounds at runtime before the kernel IR (e.g., SPIR-V) is lowered into a device binary. While this
strategy can be used for a subset of libCEED kernels, it is not enough to support the kernel fusion model of
libCEED.

Recently, Intel developed an online compiler extension for their oneAPI SYCL implementation, which
allows for the runtime compilation of OpenCL source code. Using this extension, it was possible to implement
kernel fusion. The downside is a small sacrifice in generality since at the present the libCEED SYCL backend
is tied to a specific SYCL implementation. Therefore, to help facilitate compatibility with other SYCL
implementations in the future, a hybrid approach was taken, using standard SYCL specification constants
where sufficient, and the Intel online compiler extension only where necessary.
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Figure 6: Ping-pong tests on Froniter (MI250Xs), Perlmutter (A100s), and
Summit (V100s).

2.4 Ping-pong tests on Frontier, Perlmutter, Summit

In an effort to understand sporadic step-to-step fluctuations in NekRS wall time on Frontier, we undertook
a battery of ping-pong tests using Nek5000’s platform timer() utility, which has been run on dozens of
platforms over the past two decades. The test is a one-line change in the .usr file, where users prescribe case-
specific functions such as initial and boundary conditions. It measures performance for tensor-contractions
that are central to the spectral element method and also runs a sequence of ping-pong and all-reduce timings
for message sizes ranging from 1 go 105 (64-bit) words. In addition to varying message sizes, the ping-pong
test varies the source-destination pair, starting in all cases with rank 0 and exchanging with 64 different
recipient/sender ranks, p = 1, 2, . . . , pmax < P − 1 (one recipient per trial). Short messages are averaged over
1000 iterations; long messages are timed for just a single round-trip. The 1/2 round-trip time is presented as
the red curves in Fig. 6. The black curves represent all-reduce times over approximately 10 trials in each case.

Of particular interest in these results are the large spikes for the case of Frontier with the I/O system
(Orion) turned on, seen in the lower left graph of Fig. 6. Some of the ping-pong exchanges at around 16
words averaged 0.01 seconds for the 1/2 round-trip time. Some of the all-reduce exchanges, which involve all
active ranks, took 10s of seconds. This behavior was not apparent when Orion was turned off (top right plot),
nor when the job occupied a larger fraction of Frontier (center and right figures in row 2). The large-job
improvement presumably derives from having a single job occupy the network when those exchanges were
measured. Even with Orion turned off, the short message all-reduce, relevant for vector reductions in GMRES
and conjugate gradient iteration, took about 250 µsec on Frontier, vs. 100 µsec for Summit and 35 µsec for
Perlmutter (using Slingshot 10). All of these results are for CPU-based messages. Data originating on the
device will have different behaviors, but the CPU-based exchanges are still relevant for certain operations.
We remark that no sporadic behavior was observed at lower core counts, as noted in the next Section.
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Strong Scaling Test Sets
E n rank, P

Case 1 277000 95M 8–64
Case 2 470900 161M 14-128
Case 3 4709000 1.6B 128–16320

Table 3: Problem setup for strong/weak scaling studies.

2.5 NekRS scaling performance on Frontier, Crusher, Polaris, Perlmutter, Summit

We performed scaling studies for ExaSMR’s 17×17 rod bundle simulations on the NVIDIA-based GPU
platforms, Summit (V100), ThetaGPU (A100), Perlmutter (A100) and Polaris (A100), compared to the AMD
MI-250X platforms, Frontier and Crusher [15].

In collaboration with OLCF, the Nek team performed scaling studies on Frontier using NekRS version 22.0.
Simulations on Frontier were run by John Holmen at OLCF while those on Crusher were run by the Nek team.
On Frontier, rocm/5.1.0 and cray-mpich/8.1.17 were used. On Crusher, simulations were performed with
variation of versions such as rocm/5.1.0, rocm/5.2.0, cray-mpich/8.1.16 and cray-mpich/8.1.19. On
Crusher, rocm/5.1.0 is 2%–5% faster than rocm/5.2.0. We observe that the performance on Frontier is
better than that on Crusher.

We consider ExaSMR’s 17×17 rod-bundle geometry and extend the domain in streamwise direction with
10, 17, and 170 layers, keeping the mesh density same, which correspond to 277 thousand spectral elements of
order N = 7, for a total of n = .27M ×73 = 95M grid points, 471 thousand spectral elements of order N = 7,
for a total of n = .47M ×73 = 161M grid points, and 4.7 million spectral elements of order N = 7, for a total
of n = 4.7M ×73 = 1.6B grid points, respectively. Table 3 summarizes the configuration of the testing cases.

Figure 7 compares the scaling performance of Frontier to that of Crusher. Simulations are performed for
2000 steps and the average time-per-step, tstep, is measured in seconds for the last 1000 steps. The third-order
backward-difference formula (BDF3) combined with the third-order extrapolation (EXT3) [7] is used for
timestepping and the timestep size is ∆t = 3.0e-04 (CFL=0.82).

Figure 7, left, shows the classic strong scaling for the problem sizes of n= 95M, 161M, and 1.6B,
demonstrating the average time-per-step vs. the number of MPI ranks, P . We run a single MPI rank per
GCD and there are 8 GCDs per node. The dashed lines in skyblue represent ideal strong-scale profiles for
each case. The solid lines in red are for Frontier and the solid lines in black are for Crusher. We observe that
Frontier is consistently slightly faster than Crusher for these three problem sizes. For larger problem sizes
and processor counts, the Frontier advantage is increased.

Figure 7, right, shows the average time-per-step vs. the number of points per MPI rank, n/P , where n
is the total number of grid points. tstep based on n/P is quite independent of the problem size, n. This is
the metric illustrating that the strong-scaling performance is primarily a function of (n/P ) and only weakly
dependent on n or P individually, which is in accord with the extensive studies presented in [9]. Based on
this metric, we can determine a reasonable number value of (n/P ) for a given parallel efficiency and, from
there, determine the number of MPI ranks required for a problem of size n to meet that expected efficiency.
We provide more detailed performance behaviors depending on problem sizes in Figure 9.

Figure 8, left and right, shows performance for a 17×17 rod bundle with 170 layers (n=1.6B). Here
we extend our discussion to other NVIDIA-based GPU architectures such as Summit (V100) at OLCF,
Perlmutter (A100) at NERSC, and Polaris (A100) at ALCF, and compare those to Frontier and Crusher.
While we observe that Frontier is faster than Crusher in Figure 7, we see that Crusher is faster than Summit,
but not quite as fast as the A100-based Perlmutter (NERSC) and Polaris (ALCF) platforms. We provide
more detailed performance behavior as a function of P in Figure 9.

Figure 9 shows the same metrics as in Figures 7–8. It is important to point out that these strong-scaling
plots start from a high level of performance. NekRS currently leverages extensive tuning of several key FP64
and FP32 kernels in libParanumal, including the standard spectral element Laplacian matrix-vector product,
local tensor-product solves using fast diagonalization, and dealiased evaluation of the advection operator on a
finer set of quadrature points. These kernels are sustaining up to 3 TFLOPS FP64 and 5–8 TFLOPS FP32,
per GPU or GCD. At the strong-scale limit, with MPI overhead, NekRS is sustaining ≈ 1 TFLOPS per rank
(i.e., per A100 or GCD) for the full Navier-Stokes solution.
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Figure 7: Strong-scaling on Frontier and Crusher for 17× 17 rod bundles with
10, 17 and 170 layers with total number of grid points of n = 95M , 161M , 1.6B.
Average time-per-step vs. rank, P (left) and average time-per-step vs. n/P
(right). Frontier is set with (cray-mpich/8.1.17, rocm/5.1.0) and Crusher with
(cray-mpich/8.1.19, rocm/5.2.0).

Figure 8: Strong-scaling on Frontier (MI250X), Crusher (MI250X), Perlmutter
(A100), Polaris (A100) and Summit (V100) for 17 × 17 rod bundles with 170
layers with total number of grid points of 1.6B. Average time-per-step vs. rank,
P (left) and average time-per-step vs. n/P (right).
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Figure 9: Strong-scaling on various GPU architectures for 17×17 rod bundle
with 170 layers.
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An important figure of merit is n0.8, which is the value of n/P at which the simulation realizes 80%
parallel efficiency. The plots on the first row, right of Figure 9 show n0.8 = 2.5M for Summit and 3M for
Frontier. We find n0.8 = 5M for Polaris, Perlmutter, and Crusher. The plot on row 2, left, indicates that a
remarkably small tstep value of 0.015 seconds per step is realizable on Polaris, albeit at 32% efficiency.

The plots on the last row, left, of Figure 9 show sthat the time in the advection update strong-scales quite
well, as would be expected. The curves for the single GCD and A100 collapse to nearly the same performance
while the older V100 technology of Summit is about 1.5× slower. In the absence of communication, this
kernel is sustaining 3–4 TFLOPS FP64 on these newer architectures, although the graphs here do include the
communication overhead. By contrast, the last row, right, shows the performance for the communication-
intensive coarse grid solve, which is performed using Hypre on the host CPUs. Here, both Crusher and
Summit show relatively poor performance at small values of n/P or large values of P . Also, in Figure 9 lower
right we see that Polaris without GPUDirect exhibits some level of system noise.
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Figure 10: ExaSMR’s full core 37 assemblies of 17×17 rod bundles. E = 500M ,
N = 7, n = 176B.

3. SUPPORTING CEED ECP APPLICATIONS

3.1 ExaSMR’s FOM: Full-core performance on Frontier 6400 nodes

Figure 10 demonstrates NekRS performance for ExaSMR’s 37 assemblies of 17×17 rod bundles, 500 spectral
elements axially using 512 million elements. (Including the solid elements for this conjugate heat transfer
simulation, the total element count exceeds 1 billion.) Simulations are performed for 2000 steps and the
average time-per-step, tstep with 1.09 s/step with system noise and 0.47 s/step when neglecting system noise.
The wall-clock time is broken into roughly three bands. The lowest band, which asymptotes to the interval
[0.35 : 0.55] sec/step as the step number extends beyond 1200, results from standard fluctuation in NekRS
iteration counts.1 The central band, which takes roughly 1 sec per step and which occurs every 100 steps, is
associated with computation of turbulent statistics on the host. Most of the statistical analyses in Nek5000
are user-developed and have not yet been ported to OCCA kernels to be GPU performant. Since they are
called infrequently, porting is not a high priority at this time. The third, upper, band is currently attributed
to early-access system fluctuations (e.g., as noted in Fig. 6), which are expected to improve as the system
is sorted out. We reiterate that no sporadic behavior was observed at lower core counts, as noted in the
preceding Section.

3.2 ExaWind: New LES modelings and convergence for atmospheric boundary layer

In collaboration with ECP ExaWind team at NREL, we have continued examining the modeling and
convergence studies of two open-source codes, Nek5000/RS and AMRWind, in comparison for simulating a
GABLS benchmark problem representing the atmospheric boundary layer flows [14, 16].

In this report, we summarize several models that have been developed and integrated into Nek5000/RS
which are the following:

• High-pass filter (HPF) implemented through a relaxation term in the momentum equation.

• WALE (Wall-Adapting Local Eddy-viscosity) model for some simulations. (Close to the HPF results.)
WMLES (Wall-Modeled Large Eddy Simulation) traction BCs at target Re (Retarget 50M): HPF fails
with wall modeling at a target Reynolds number, not eddy-viscosity based.

• Splitting of eddy viscosity into an anisotropic part (mean-field eddy viscosity or MFEV) and an isotropic
part which is modeled using either HPF or Smagorinsky (SMG) [21] based on fluctuation strain rate.

1The Nek5000/RS iterative solvers use an initial guess that is the best-fit in the space of prior solutions, which effectively
removes all of the smooth error components, leaving only a random sporadic component to be solved at each step. Thus the
iteration counts necessarily vary from one step to the next [10].
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• SGS-TKE (subgrid-scale turbulent kinetic energy) [2] approach using filter length scale definition based
on either the grid size ∆ or the Deardorff scale [1].

• As an outcome, we observe the results with MFEV/SGS-TKE using a filter length scale equal to ∆
agree quite well with MFEV/SMG when filter length scale is equal to Deardorff scale some deviation
from MFEV/SMG.

For the atmospheric LES, the incompressible Navier–Stokes (NS) and potential temperature equations
are solved in a spatially filtered resolved-scale formulation, expressed in nondimensional form as

∂ūi

∂t
+ ūj

∂ūi

∂xj
= −1

ρ̄

∂p̄

∂xi
− ∂τij

∂xj
+ fi −

θ′

θ0
gi, (1)

∂ūj

∂xj
= 0, (2)

∂θ̄

∂t
+ ūj

∂θ̄

∂xj
= −∂τθj

∂xj
, (3)

where an overbar denotes the LES filtering operation such that ūi is the ith component of the resolved-scale
velocity vector, ρ̄ is the density, p̄ is the pressure, gi is the gravity acceleration vector, and θ̄ is the potential
temperature in the resolved scale. The scalar θ′/θ0 that dictates the sign and strength of the buoyancy force
is obtained from

θ′

θ0
=

θ̄ − θ0
θ0

, (4)

where θ0 is the reference potential temperature and fi includes the Coriolis acceleration, defined as

fc,i = −2ϵi3kΩūk, (5)

where ϵijk is the alternating unit tensor and Ω is the planetary rotation rate vector at the point of interest on
the planet (which is dependent on latitude), and j = 3 corresponds to the vertical direction.
In addition, τij and τθj are the stress tensors in the momentum and energy equations, which include (and are
dominated by) SGS modeling terms

τij = − 2

Re
Sij + τsgsij = − 1

Re

(
∂ūi

∂xj
+

∂ūj

∂xi

)
+ τsgsij , (6)

and

τθj = − 1

Pe

∂θ̄

∂xj
+ τsgsθj , (7)

where Re is the Reynolds number, Pe is the Peclet number, Sij is the resolved-scale strain-rate tensor and
τsgsij and τsgsθj are the subgrid scale stress tensors.

The MFEV-SMG is based on SMG model for isotropic part with traction boundary condition. In this
model, the sub-grid-scale dissipation is again effected through a non-isotropic, MFEV obtained by the
horizontally-averaged mean strain rate, and an isotropic, fluctuating part, which is here taken into account
through an SMG model based on the fluctuating strain rate. In this case, the SGS model of [22] is based on
the following expression

τsgsij = −2γνtSij − 2νT ⟨Sij⟩ , (8)

where also here the angle brackets ⟨ ⟩ denote averaging over the homogeneous directions and νT is an average
eddy viscosity which is expressed in terms of mean flow quantities. In Eq. (8), γ is an “isotropy factor,” which
accounts for variability in the SGS constants due to anisotropy of the mean flow. In [22], the fluctuating eddy
viscosity, νt, is obtained using an eddy viscosity model based on the SGS turbulent kinetic energy equation, in
which the shear production term is computed from the fluctuating velocities. When the fluctuating (isotropic)
part of turbulent motion is taken into account through the use of a SMG model based on the fluctuating
strain rate, which is eddy-viscosity based, νt in Eq. (8) is non-zero and the full stress tensor has to be taken
into account.
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∂ūi

∂t
+ ūj

∂ūi

∂xj
= − ∂p̄

∂xi
− ∂τij

∂xj
− 2ϵi3kΩūk + (1− δi3)

∂

∂z
νT

∂⟨ūi⟩
∂z

− θ′

θ0
gi (9)

≈ − ∂p̄

∂xi
+

∂

∂xj

(
1

Re
+ γνt

)
2Sn

ij − 2ϵi3kΩūk + (1− δi3)
∂

∂z
νT

∂⟨ūi⟩
∂z

− θ′

θ0
gi, (10)

∂θ̄

∂t
+ ūj

∂θ̄

∂xj
≈ ∂

∂xj

(
1

Pe
+

γνt
Prt

)
∂θ̄

∂xj
+

∂

∂z
νT

∂⟨θ̄⟩
∂z

. (11)

Here again, the expression for νT is derived so that the law-of-the-wall behavior can be recovered in the
absence of any resolved turbulence. On the other hand, for the isotropic part of the eddy viscosity νt, the
fluctuating strain rate is used:

νt = (Cs∆)
2
√
2S′

ijS
′
ij , (12)

where

S′ =
√

2 ⟨(Sij − ⟨Sij⟩) (Sij − ⟨Sij⟩)⟩, (13)

and

Cs =

(
Ck

√
Ck

Cϵ

)1/2

. (14)

The isotropy factor γ is obtained by

γ =
S′

S′ + ⟨S⟩
, (15)

and where

⟨S⟩ =
√

2 ⟨Sij⟩ ⟨Sij⟩. (16)

Finally, the expression that holds for the horizontally averaged traction along the lower wall is:

⟨τuw⟩ = − (⟨νtγ⟩+ νT )
∂⟨u⟩
∂z

,

⟨τvw⟩ = − (⟨νtγ⟩+ νT )
∂⟨v⟩
∂z

.

(17)

Results obtained with the MFEV/SMG approch also demonstrate convergence with increasing resolution
as well as asymptotic convergence with Re and z+1 . Moreover, convergence with resolution seems to be faster
with MFEV/SMG as compared with the MFEV/HPF approach described in the previous subsection. This
can be observed in the top of Figure 11, which shows horizontally averaged streamwise and spanwise velocities
at t=6h, t=7h and t=8h using MFEV/SMG and traction boundary conditions at the lowest two resolutions.

Figure 11, bottom, shows the horizontally averaged streamwise and spanwise velocities at t=6h for the
two highest resolutions 5123 and 10243 for MFEV/HPF and for 5123 for MFEV/SMG and AMRWind,
respectively. As can be observed, both Nek5000/NekRS approaches converge to the same profiles as resolution
is increased; they also agree well with the AMRWind obtained profiles at 5123.

3.3 MAGMA in MARBL

The MARBL team has started to integrate some of MAGMA’s dense matrix routines. Inversion and action
of local dense matrices are common operations in all modules of MARBL. These matrices result from the L2

FE space discretization of the material-dependent specific internal energies and group-dependent radiation
energy unknowns. The initial MAGMA integration has been targeting MARBL’s radiation-hydrodynamics
module. This module solves a nonlinear problem through inexact Newton’s method, where the resulting
Jacobian computation requires inverting local L2 dense matrices for each mesh element. These are square
matrices that vary in size throughout the mesh; the number of entries for an element E is(

(#present-materials-in-E +#radiation-groups)×NE

)2
,
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Figure 11: (Top) Horizontally averaged streamwise and spanwise velocities at
t=6h, t=7h and t=8h using Nek5000 with MFEV/SMG and traction boundary
conditions at two different resolutions; (Bottom) Horizontally averaged streamwise,
spanwise velocities at t=6h using MFEV/SMG and MFEV/HPF with traction
boundary conditions, compared with AMRWind results, for 5123.
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where NE is the number of L2 DOFs in E. This setup is appropriate for MAGMA’s variable batch LU
factorization capability, and in particular the method magma dgetrf vbatched. We report a run on 38720 3D
elements on 8 V100 GPUs (4840 elements per device, Q2-Q1 discretization with NE = 8). Using MARBL’s
baseline custom GPU code for the LU factorization, the inversion of all matrices takes 1.903s. Replacing that
with MAGMA’s magma dgetrf vbatched procedure, the inversion takes 0.181s, a 10.5× speedup.

More tests will be performed in the future, and more MAGMA routines will be utilized in various MARBL
modules. The team is currently looking to replace existing HIP/cuBLAS calls with MAGMA ones as they
have been observed to be faster than CUDA and HIP versions. These include use of the magma dgetrf batched

routine for batch LU factorization, and the magmablas dgemv batched routine for matrix-vector products.
These will be used in MARBL’s Lagrangian and field remap phases [24], either for LU factorization of the
local matrices, or for element-local action of the operators in the settings of action-based CG solves through
partial assembly.

The needs of the MARBL team have prompted enhancements of batch GEMV support within MAGMA
itself; these are now available in MAGMA release 2.7.1. MAGMA provides the batch matrix-vector multipli-
cation routine (batch GEMV: Yi = αAi ×Xi + βYi, for i ∈ {0, 1, · · · ,batch size-1}). However, its interface
previously accepted only pointer arrays that should be resident in the GPU memory before the kernel launch.
A simpler interface is possible if the matrices/vectors are equidistant from each other, for which a pointer
array can be replaced by a single pointer and a fixed stride. The codebase of the batch GEMV routine has
been updated to support both interfaces, accepting either pointer arrays or a single pointer plus a fixed
stride. Additionally, special performance optimizations have been added for small square matrices up to
32× 32. A customized kernel has been developed that addresses the sub-warp configurations and maximizes
the utilization of the memory bandwidth.
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Figure 12: Performance of the batch GEMV operation in double precision.
Results are shown for 100k square matrices of sizes up to 32×32. The performance
tests are conducted on the two GPUs architectures powering Summit (V100) and
Frontier (MI250x) supercomputers.

Figure 12 shows the performance results of the batch-strided GEMV kernel in MAGMA against the
vendor libraries. The figure shows the performance gains on the V100 GPU (which powers the Summit
supercomputer), and the MI250x GPU (which powers the Frontier supercomputer). The performance gains
against cuBLAS on the V100 GPU range from 1.06× up to 8.65×. On the MI250x GPU, MAGMA achieves
significant speedups against hipBLAS, ranging from 2.87× to 71.44×. Figure 13 shows that the MAGMA
superior performance is portable to two other GPUs. On the A100 GPU, MAGMA is able to achieve speedups
between 1.13× and 5.96× compared to cuBLAS. On the H100 GPU, the performance gains are between
1.08× and 5.82×.

3.4 libCEED/Fluids and PHASTA

The CU Boulder team has been collaborating with Ken Jansen to port the numerics in PHASTA to libCEED.
We have focused on scale-resolving low-Mach turbulence using a stabilized (SUPG/VMS) continuous finite
element formulation on unstructured meshes. The formulation solves for primitive variables, which is
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Figure 13: Performance of the batch GEMV operation in double precision.
Results are shown for 100k square matrices of sizes up to 32×32. The performance
tests are conducted on the A100 and the H100 GPUs to show performance
portability.

applicable to all speeds while avoiding ill conditioning of the conservative basis at low Mach, and provides
better accuracy in boundary layers as explained in Figure 14. The formulation is

∂

∂t

 ρ
ρu
ρe


︸ ︷︷ ︸

q

+∇ ·


ρu

ρu⊗ u+ pI
(ρe+ p)u︸ ︷︷ ︸

Finv

−σ
−σ · u− k∇T︸ ︷︷ ︸

Fdiff

−

 0
ρg

ρu · g


︸ ︷︷ ︸

S

= 0 (18)

where the total flux F = Finv + Fdiff is the sum of inviscid and diffusive fluxes, y = [p,u, T ] are the
primitive variables (pressure, velocity, and temperature) represented in the finite element space, and σ is the
Cauchy stress. An equation of state is necessary to convert from primitive to conservative variables q(y).
The time derivative is discretized as ∂q/∂t = (∂q/∂y)(∂y/∂t) where ∂y/∂t is defined in terms of y at the
current step by the generalized alpha time integrator provided by PETSc. The formulation is fully implicit,
typically needing 3 Newton iterations per time step.

Galerkin finite element methods are not stable for high Reynolds number flows so we follow the stabilization
approach in [25], leading to the weak form

∫
Ω

v ·
(
∂q

∂t
− S(q)

)
−
∫
Ω

∇v :F (q) +

∫
∂Ω

v · F (q) · n̂

+

∫
Ω

∇v :

(
∂Finv

∂q

)
τ

(
∂q

∂t
+ ∇ · F (q)− S(q)

)
= 0 , ∀v ∈ V (19)

where τ ∈ R5×5 is an intrinsic time scale matrix that depends on the state y and local mesh invariants.
The SUPG technique and the operator ∂Finv

∂y (rather than its transpose, which appears in Galerkin Least

Squares [19]) can be explained in the variational multiscale (VMS) framework via an ansatz for subgrid state
fluctuations ỹ = −τr where r is the strong form residual. The boundary integral appearing in (19) is not
integrated literally, but requires boundary conditions.

We have verified the new solver via a range of benchmark problems and machine-epsilon agreement with
PHASTA, a mature solver with two Aurora ESP projects, prior INCITE awardee, etc. The new solver
produces equivalent results on CPU and GPU. We have implemented a few features that improve efficiency
and numerical fidelity relative to PHASTA.
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Figure 14: Nodally exact temperature solution to the compressible Blasius
profile using linear interpolation in primitive versus conservative variables. Kinetic
energy grows quadratically in the boundary layer, so use of a conservative basis
produces ”scallopping” of the temperature profile and thus inaccurate heat fluxes
in the boundary layer. The Chebyshev solution is exact to 10 digits.

3.4.1 Efficient solvers

While PHASTA typically assembles sparse matrices or uses a finite difference JFNK approach with point-block
Jacobi or matrix-based preconditioning, we opt for a matrix-free analytic Jacobian of the Galerkin part of
the discretization (including boundary conditions) with lagging of the stabilization τ . While this lagging
spoils quadratic convergence of Newton, it converges nearly as fast for the first three iterations, which provide
sufficient accuracy.

While matrix-based preconditioners such as block Jacobi/ILU often pay off for linear elements on CPUs,
sparse matrices are unaffordable for high order elements and triangular solves on GPUs operate at about 20x
lower throughput than SpMV. Matrix-free application of the Jacobian are so much faster than matrix-based
methods on GPUs that we have found point-block Jacobi adequate. LibCEED computes the numeric entries
on device and PETSc’s MatSetValuesCOO performs the necessary communication on-device. In Figure 15, we
compare t0.8, the execution time per time step for 80% efficiency strong scaled simulation using ceed-fluids
on Polaris (4x A100 per node). By comparison, PHASTA running on Skylake requires about t0.8 = 10
seconds/step for linear Q1 elements in equivalent flow regimes.

3.4.2 Boundary conditions

Our flow simulations use a synthetic turbulence generation (STG) boundary condition [20] to reduce cost
to create well developed boundary layers at Reθ ≈ 1500 and higher. The STG inflow is not spanwise
periodic even when the simulation is (as in the NASA Speed Bump) and acts as a loud acoustic source that
contaminates the solution if not damped. We use an internal damping layer (IDL) to damp these acoustics out
without disrupting the synthetic structures developing into natural turbulent structures. The implementation
is a ramped volumetric forcing term (similar to that described in §8.4.2.4 of [6]),

S(q) = −σ(x)
∂q

∂y

∣∣∣∣
y

y′

where y′ = [p− pref ,0, 0]
T is a pressure-primitive anomaly and σ(x) is a user-defined linear ramp from a

max value of approximately the inverse time step reducing to zero not far from the inflow boundary.
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Figure 15: Cost per time step (t0.8) of matrix-free formulations and assembled
sparse matrix formulations.

If you know the complete exterior state, a freestream boundary condition (defined by solving a Riemann
problem using a prescribed “freestream” state) is the least reflective boundary condition, but is disruptive to
viscous flow structures. If thermal anomalies must exit the domain, the Riemann solver must resolve the
contact wave to avoid reflections. For example, an HLLC solver is sufficient in this regard while the simpler
HLL converts thermal structures exiting the domain into grid-scale reflecting acoustics (cf. [13], which was
tantalizingly close to making this realization had they run one of their tests just a bit longer).

The problem is more open if acoustic reflections are not a concern and/or the flow is impacted by walls
or interior structures that you wish to resolve to near the boundary. We have developed an outflow solver
that combines a Riemann solve using specified exterior pressure and temperature (but extrapolated interior
velocity) with a viscous flux integral that is empirically stable even in the presence of vigorous recirculation
and vortices crossing lateral boundaries. We anticipate this will permit smaller domains with shorter time
scales even for complex flows like the Common Research Model (CRM), in which the High-Lift Prediction
Workshop recommends meshes with a spherical domain radius of 12.5 km.

3.4.3 Preparing for the NASA Speed Bump

NASA’s Speed Bump represents one of the simplest problems in which RANS fails catastrophically, especially
in predictiong the friction coefficient and flow separation. It has been extensively studied and quality wind
tunnel data is available, thus is a good target to use DNS as a lens to explain what ingredients are missing
in RANS models and would need to be added to have a chance of predicting high-lift flows “for the right
reasons” (to use summary language from NASA’s Fourth High-Lift Prediction Workshop). Previous DNS at
ReL = 106 [3] and subsequent studies at ReL = 2 · 106 (paper in preparation) established 6-15 nominal grid
spacing (6 plus units in spanwise direction, 15 plus units in streamline direction with graded wall normal
spacing starting from 0.3 plus units at the wall and reaching about 10 when entering the outer boundary
layer) as DNS resolution. PHASTA’s unstructured linear prism/tetrahedral elements smoothly adapted to the
Kolmogorov scale enabled a nearly 5x reduction in the number of grid points required for DNS as compared
to prefactored fourth order compact finite differences on overset grids [23]. Note that in the ReL = 1 · 106
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Figure 16: Velocity structure for Ma = 0.1 flat plate with STG inflow, freestream
top, and the new outflow boundary condition, with the boundary layer developing
from Reθ = 970 to 1500.

case, the flow experiences partial relaminarization while the inner boundary layer stays fully turbulent at the
higher Reynolds number.

We are in the process of analyzing dispersion properties for mixed topology meshes and high order
elements. Our primary test has been on the flat plate depicted in Figure 16 developing from Reθ = 1000 to
1500 using 12-30 nominal grid spacing (24-60 for quadratic and 36-90 for cubic elements), which is slightly
sub-DNS resolution when using linear elements. While previous studies needed 25 to 40 days to simulate past
the initial transient and compute converged statistics for ReL = 2 · 106, we anticipate that hex-dominant
cubic elements will need less than 3 days on a modern GPU machine. (This will also make significantly
larger simulations tractable on Aurora and Frontier.) In preparation for this study, we added interfaces to
PETSc and corresponding use in ceed-fluids to compute variationally consistent projections of Reynolds/Favre
averaged spanwise statistics on unstructured meshes with arbitrary partitions.

3.4.4 Data-driver subgrid stress modeling

Based on the performance results and DNS capability, both Aurora ESP projects that had been using
PHASTA are in the process of transitioning to ceed-fluids. Among these is the online training and simulation
using data-driven subgrid stress models based on [18], which preserves reference frame and π (unit) invariance
while enabling arbitrary stress models such as neural networks. These models will be used for a range of
complex flows including DDES for the CRM.

3.5 libCEED/Contact Mechanics

Ratel [4] is a solid mechanics solver based on libCEED and PETSc that was spun off from libCEED’s mini-app
for use in the CU Boulder PSAAP center. As part of that work, there is a need to model frictional contact of
elastoplastic bonded crystalline materials with near-rigid platens. The first implementation used a Nitsche
boundary condition and was found to work well with matrix-free p-multigrid. Although the literature [5]
emphasizes consistency of the Nitsche formulation, it is not a consistent method with finite Poisson ratio
on finite grids. The reason is similar to locking, with high-friction or no-friction surfaces producing Nische
consistency forces that are significanly wrong and can even have the wrong sign. This is also a problem for
plasticity since the Nitsche formulation requires evaluation of stress within a boundary integral, but plastic
internal variables are only defined in the volume. We developed an alternate Nitsche-like formulation based
on reaction forces that is variationally consistent on finite grids and yet preserves the attractive matrix-free
p-MG applicability. It requires a composition of CeedOperator from volume to surface. We are working to
support such composition more generally in libCEED while still providing all preconditioning ingredients.

4. OTHER PROJECT ACTIVITIES

4.1 Conferences: SIAM-CSE 2023, ICOSAHOM 2023, ParCFD

The CEED team organized two successful minisymposia at the SIAM Conference on Computational Science and
Engineering (SIAM-CSE23) in Amsterdam (https://www.siam.org/conferences/cm/conference/cse23), including
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16 speakers from various institutions in US and Europe. Two of the CEED members are invited to serve as
Affinity Group Leader on High Order Methods.

Two of the CEED members are also invited to the local organizing committee of the 2023 International
Conference on Spectral and High Order Methods (ICOSAHOM 2023 Seoul Korea) (https://icosahom2023.org/)
where CEED is organizing a minisimposium on high-order algorithms, software and applications for exascale.
One of the CEED members is invited as a plenary speaker.

Parallel Computational Fluid Dynamics (ParCFD) 2023 (https://www.parcfd2023.org/) is the 34th event in
the ParCFD series since its inaugural event in 1989. ParCFD is an annual international forum devoted to the
discussion of recent developments and applications of parallel computing in the field of computational fluid
dynamics and related disciplines. One of the CEED members is invited as a plenary speaker to ParCFD 2023.

4.2 Software Release: MFEM v4.5.2

Version 4.5.2 of MFEM was released on March 23, 2023. Some of the new additions in this release are:

• Support for pyramids in non-conforming meshes.

• Removed the support for the Mesquite toolkit in favor of MFEM’s TMOP algorithms.

• New fast normalization-based distance solver.

• Option to auto-balance compound TMOP metrics.

• Support for shared Windows builds with MSVC through CMake.

For more details, see the interactive documentation at https://mfem.org.

4.3 Software Release: MAGMA v2.7.1

In this release we added support for CUDA 12, as CUDA 12 depreciated some CUDA features previously used
in MAGMA. A new interface for batch GEMV that accepts a pointer plus stride was added, and performance
was improved for batch GEMV targeting square sizes up to 32. These batched GEMV operations were used
in the ECP ExaAM project. See the MAGMA 2.7.1 release notes for further details. Additionally, as part of
the ongoing work to port and tune MAGMA for Intel GPUs, the MAGMA team now has a publicly-visible
branch of MAGMA with SYCL support.

4.4 Software Release Upcoming: NekRS v23.0

An upcoming release of NekRS v23.0 includes the following updates:

• Added point interpolation

• Added coupled multi-session (neknek)

• Added particle tracking capability

• Added single source udf+oudf

• Improved runtime statistics

• Improved Chebyshev smoother

• Support flexible time averaging

• Support ‘on’ boundary condition (aligned)

• Added extrapolation initialGuess method

• Support scaleable JIT compilation

• Added more examples

• Updated various bug fixes
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5. CONCLUSION

The goal of this milestone was to support ECP applications in the preparation and execution of their exascale
challenge problem runs. We focused on multi-node scaling Frontier (both strong and weak scaling) and
performed additional developments to help CEED-enhanced applications to achieve their planned FOMs.

As part of this milestone, we also ported/optimized the CEED software stack, including Nek, MFEM and
libCEED to Aurora and El Capitan early access hardware, worked on optimizing the performance on AMD,
NVIDIA, and Intel GPUs, and demonstrating impact in CEED-enabled ECP and external applications.
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6. NDA MATERIAL

This section contains NDA material, in particular all of the results on the Aurora early access systems
(Sunspot, Arcticus, and Florentia) included in this report.

6.1 MAGMA in ExaAM

Initial testing of ExaConstit’s HIP port on Crusher with a mesh size and loading conditions, similar to what
the ExaAM Frontier runs would utilize, noted a 2x slow-down in performance in comparison to the same
Summit runs. Through the use of Caliper annotations and help from HPE staff at the Crusher office hours, it
was determined that the batch matrix-vector product used in the element assembly formulation was the root
cause. Initial attempts to fix this issue made use of hipBLAS which did increase performance on Crusher,
but the Crusher runs were still slower than Summit. After reaching out to the MAGMA team as part of the
ExaAM-CEED engagement, they were able to provide us optimized batch GEMV calls that are easily usable
within MFEM. These optimized kernels resulted in a large performance wins for ExaConstit on Crusher
resulting in a 3x speed-up over the original Crusher runs and a 1.5x speed-up over the Summit runs. All of
the timings of these runs are summarized in Table 4. Lastly, the MAGMA work was used as part of OLCF
ticket: OLCFDEV-1325 to drive optimizations within hipBLAS for small matrices N ¡=32 and M ¡=32 and
those optimizations should be landing in ROCm v5.6.0.

Platform Code modification Runtime (s)
Summit develop branch 780
Crusher HIP develop branch 1450
Summit HIP develop branch 720
Crusher HIP batch (GEMV) branch 960
Summit HIP batch (GEMM) branch 830
Crusher MAGMA batch (GEMV) branch 480

Table 4: Summary of batch matrix-vector optimizations within ExaConstit/M-
FEM for different platforms

6.2 Omega h progress on Sunspot

The Omega h GPU accelerated conforming mesh adaptation library supports execution on AMD and NVIDIA
GPUs. In the last period efforts were focused on moving towards having a Kokkos-only backend that has no
dependency on vendor libraries such as CUDA, HIP, (Roc)Thrust or Intel DPL, and runs on AMD, NVIDIA,
and Intel GPUs. This backend passes all tests on NVIDIA GPUs and is failing 3 of 19 tests when ran on an
Intel Ponte Vecchio GPU.

Critical to the increase in passing tests on the Ponte Vecchio GPU was (1) a compiler bug fix (CMPLRLLVM
GSD2581 available in the 2022.12.30.002 compiler) and (2) support from ANL and Intel staff running tests
using development drivers and compilers (SDK). Given that several tests went from failing to passing when
using the development SDK, the Omega h test suite was added to the set of tests ran by ALCF when a new
SDK is made available to Sunspot users and included in a milestone report focusing on application readiness
for the Intel-ANL Compiler Working Group.

6.3 NekRS, ExaSMR scaling performance on Sunspot, up to 32 nodes

We have been continuing weekly or bi-weekly meetings with Intel team. In collaboration with Intel team, we
ported NekRS on Sunspot, and studied kernel performance and ExaSMR’s singlerod and 17×17 rod-bundle
simulation performance for varying sizes, using up to 384 tiles on Sunspot PVCs.

Singlerod Performance on a single PVC on Sunspot. Table 5 demonstrates NekRS performance for
ExaSMR’s singlerod simulation on a single PVC. Simulations are performed for 500 steps and the average
time-per-step, tstep, is measured in seconds for the last 400 steps. For a given system, the ratio is tstep to
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GPU Performance on a Single GPU: singlerod, E = 7168, n = 2, 458, 624, N = 7
System gpu Device API vi pi tstep (sec) Ratio
Summit 1 16GB V100 GPU CUDA 4 1 6.78e-02 1.62
Sunspot 1 64GB PVC 1T DPCPP 4 1 8.39e-02 2.01
Sunspot 1 128GB PVC 2T DPCPP 4 1 5.97e-02 1.43
Spock 1 32GB MI100 GPU HIP 4 1 7.98e-02 1.91
Crusher 1 64GB MI250X (1 GCD) HIP 4 1 6.55e-02 1.57
ThetaGPU 1 40GB A100 GPU CUDA 4 1 4.31e-02 1.03
Perlmutter 1 40GB A100 GPU CUDA 4 1 4.17e-02 1.00
Polaris 1 40GB A100 GPU CUDA 4 1 4.16e-02 1.00

Table 5: NekRS performance on various architectures using a single GPU.

that of Polaris. vi and pi represent the average iteration counts per step of the velocity components and
pressure. Timestepping is based Nek5000’s second-order characteristics method with one substep [12, 17]
and the timestep size is ∆t = 1.2e-3 (CFL=1.82). Pressure preconditioning is based on p-multigrid with
CHEBYSHEV+ASM smoothing and hypre AMG for coarse grid solve [8]. Tolerances for pressure and velocity
are 1e-4 and 1e-6, respectively.

The single-device results of Table 5 show that, for the current version of NekRS, the A100 is 1.62× faster
than the V100 on Summit. The current performance for a single tile PVC is about half that of the A100,
while two tiles (with MPI overhead) realize 70% of the A100 perfomance. A single GCD of the MI250X
realizes about 64% of the A100 performance. It’s important to note that the A100 and MI250X kernels have
been extensivel tuned for the respective NVIDIA / AMD products, whereas the DPCPP code running on
PVC is the straight output from OCCA kernels in the current NekRS release, with no platform-dependent
tuning. The NekRS/ANL team will be working with Intel to optimize the key kernels, particularly the
advection kernel, which puts significant pressure on registers because, due to dealiasing, the data is roughly
(3/2)3× larger than the usual (N + 1)3 data blocks associated with Nth-order hexahedral elements used in
the spectral element formulation.

17×17 rod-bundle performance on 32 nodes of Sunspot. Figure 17 shows strong-scaling on Sunspot for
17×17 rod bundle with 10 layers. Of particular note is the lower left figure—makef() refers to construction
of the right-hand side terms for the Navier-Stokes update, which includes the dealiased advection terms
mentioned above. We see that Sunspot is not doing well for this term. On the other hand, for the
communication-intensive coarse-grid solve, which is executed on the host, Sunspot is just as fast as Perlmutter
and Polaris.

6.4 MAGMA and GEMMs for non-tensor finite elements on PVC

As part of the ongoing effort to port the MAGMA library to SYCL and early efforts to port libCEED
to SYCL, we have investigated the performance of the batch GEMM operations used by the MAGMA
backend for non-tensor basis functions on PVC. We consider both the new specialized kernels for lower-order
elements, discussed in 2.2, and the “GEMM selector” used to pick the best configuration of standard and
batch GEMMs from MAGMA or the vendor-provided library. The specialized kernels are incorporated into
libCEED’s runtime compilation framework for CUDA and HIP, but as libCEED SYCL support is still in
progress, the kernels were instantiated for a range of values of P (total number of nodes in element), Q (total
number of quadrature points), and nb (columns of each matrix in the batch GEMM operation) and compiled
ahead-of-time. We considered “full” ahead-of-time compilation for the PVC device, rather than relying on
SYCL’s default JIT. These stand-alone testers consider only the required multiplication for the basis action
of a particular size, rather than working inside an actual libCEED BP implementation. In all cases, each case
was repeated eleven times, with the results from the first iteration removed as a warm-up and the other cases
averaged. We consider one tile of one GPU on Sunspot, assuming we will want to tune the MAGMA backend
to perform best in explicit scaling mode; further experiments using the whole GPU with implicit scaling can
be done in the future.

The specialized kernels, standard MAGMA GEMM, and standard MAGMA batch GEMM were all ported
from CUDA to SYCL with the help of Intel’s dpct tool. In cases where MAGMA has separate tuning
parameters for CUDA and HIP (as for the standard GEMM), the CUDA parameters were chosen as a
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Figure 17: Strong-scaling on various GPU architectures for 17×17 rod bundle
with 10 layers.
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starting point. Any changes to the kernels were mostly to slightly rearrange code as necessary to allow all
synchronization ( syncthreads in CUDA/HIP; barrier in SYCL) to be outside of any conditional checks.
This is currently required to satisfy the stricter barrier requirements for SYCL, which does not allow threads
which have exited early to be exempted from participating in the barrier before other threads can proceed.

Tuning of the specialized MAGMA backend non-tensor kernels. In the following, values of P and
Q align with those used in MFEM for standard tetrahedral elements of orders 1 through 8. Values of N –
the total number of elements (multiplied by the total number of components, if the basis has more than one
component) – replicate the data in the lookup tables of the current libCEED MAGMA backend GEMM
selector. For every N considered, nb was varied from 1 to 32 (including every value in between) for the
specialized kernels. To find the best values of nb, the results of the benchmark were split into five groups
based on the value of N. The groups were separated by the same process that the libCEED MAGMA backend
currently uses to select a specialized kernel to run for a particular problem size. Within each group, the
performance for each N was normalized by the highest-rated Gflop/s rate for that N, resulting in values
ranging from 0-1 across the different values of nb The nb which maximized the minimum performance across
the group was selected for the group. The top rows of Figures 18 and 19 illustrate this selection for two
element sizes; the vertical lines indicate the selected value of nb for the group.

Large GRF compilation option. The specialized MAGMA basis kernels make heavy use of registers, and
the compiler warned of large amounts of spilling when performing the ahead-of-time device code compilation
for PVC. We also ran the benchmarks with the -ze-intel-enable-auto-large-GRF-mode compiler flag enabled.
This doubles the allocated registers for the kernel and changes trends in performance across nb and the best
nb to choose, as seen in the bottom rows of Figures 18 and 19. As enabling “large GRF mode” improved
performance of the specialized kernels – from modest gains around 1.2X to over 3X or 4X speedup comparing
the best-case “large GRF” to the best-case “regular” – and did not negatively impact standard GEMM, we
consider exclusively large GRF results from this point forward.
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Figure 18: Selecting the best interpolation nb for a group of values of N, on one
tile of PVC. The top row shows the default compilation flags, while the bottom
row shows the version with large GRF enabled. Dashed vertical lines indicate
the selected best value for nb.

Standard GEMMs for higher-order non-tensor elements. For higher orders of basis functions, the
MAGMA backend uses standard GEMM and batch GEMM computations from either the MAGMA library
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Figure 19: Selecting the best gradient nb for a group of values of N, on one tile
of PVC. The top row shows the default compilation flags, while the bottom row
shows the version with large GRF enabled. Dashed vertical lines indicate the
selected best value for nb.

or the vendor-provided BLAS. To find the best configurations with the ported SYCL code and with oneMKL,
we considered larger values of nb, starting at 32 and increasing in multiples of two for values that evenly
divide the current N; this was again based on the previous benchmarks used to create the current GEMM
lookup tables for CUDA and HIP. In Figure 20, we show an overview of the selected configurations for the
transpose interpolation action. (The middle table, for MI250X, reproduces the last four columns of Figure
13 from [11], with some added information.) The color-coding of the boxes indicate the choice of routine,
while the text shows the nb chosen if the box represents a batched GEMM routine. Note that there are
four boxes marked with “*” in the right-most column of the A100 table; these are the only cases for which
the GEMM choice used in the following results are different from what would be selected by the current
MAGMA backend (which matches the coloring). Previously, when the benchmark tuning was done for the
MAGMA backend, the MAGMA library would ultimately call cuBLAS for these large sizes, meaning they
were mistakenly marked as MAGMA cases when they were “really” cuBLAS cases. The MAGMA backend
lookup tables will have to be updated accordingly.

PVC results are very poor for the ported MAGMA routines: the vendor BLAS (oneMKL in this case)
is chosen in every case for transpose interpolation at these element sizes. (However, for the non-transpose
interpolation, which is not pictured here, there are some smaller cases, with P = 56 and N < 20,000, where a
single MAGMA GEMM is chosen over oneMKL.) There is also no trend to favor a single GEMM for the
largest problems, found in the bottom-right of the table, unlike the A100 and MI250X cases. On the whole,
20 demonstrates the need for further tuning of the MAGMA routines for SYCL, or perhaps more drastic
changes to the source code.

For comparison, we ran these same “stand-alone” benchmarks on A100 (Polaris) and one GCD of MI250X
(Crusher). These benchmarks did not perform a sweep to choose the best nb, but used the value already
selected by the current libCEED backend. In Figure 21, we show the best-performing configuration on the
three architectures for the specialized interpolation and gradient kernels, corresponding to first through fourth
order tetrahedron elements in MFEM. Figure 22 shows a similar comparison for the standard GEMMs for
higher-order elements, with sizes corresponding to fifth through eighth order elements. (Figure 22 only shows
interpolation results, as the MAGMA backend currently uses the same GEMM selector decision for gradient,
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****

Figure 20: Summary of “GEMM selector” choices for transpose interpolation
action on A100, MI250X, and PVC. Text indicates the chosen value of nb, the
batch size, for a batch GEMM case. The four boxes marked with an * for A100
were swapped from MAGMA to cuBLAS in the results plots due to a change in
the MAGMA library, implemented after the benchmark tuning for the current
MAGMA backend was done; the backend will be updated accordingly in the
future.

with the action repeated three times for a three-dimensional element.) Unfortunately, the “naive” port of the
specialized kernels does not perform well in most cases (smaller values of transpose interpolation being the
exception). For the standard GEMMs in higher-order elements, we know that the results are always oneMKL,
rather than the ported MAGMA code, as shown in Figure 20. The transpose basis action, shown on the left
side of Figure 22, has element sizes for which the PVC performance matches or surpasses that of one GCD of
the MI250X for large values of N, where the MI250X results suffer a sudden drop. The performance still
lags more than expected for the non-transpose basis action; this will need to be investigated further. We
note that this case has a “mixed” usage for the input matrices (transpose/non-transpose) in terms of the
parameters given to the GEMM routines, while the transpose basis action (in libCEED terminology) uses
non-transpose/non-transpose, which is a key difference.
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Figure 21: Comparing performance of the specialized MAGMA backend non-
tensor interpolation (top row) and gradient (bottom row) kernels. Tests performed
on NVIDIA A100 (CUDA 11.4), one GCD of AMD MI250x (ROCm 5.4), and
one tile of Intel PVC (oneapi-prgenv/2022.10.15.006.001).
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Figure 22: Comparing the standard GEMM/batch GEMM performance for
higher-order non-tensor interpolation. Tests performed on NVIDIA A100 (CUDA
11.4), one GCD of AMD MI250x (ROCm 5.4), and one tile of Intel PVC (oneapi-
prgenv/2022.10.15.006.001)
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