
ECP Milestone Report

Port and optimize the CEED software stack to Aurora / Frontier
EA Systems

WBS 2.2.6.06, Milestone CEED-MS37

Tzanio Kolev
Paul Fischer
Natalie Beams
Jed Brown

Jean-Sylvain Camier
Noel Chalmers
Veselin Dobrev
Yohann Dudouit
Stefan Kerkemeier
Yu-Hsiang Lan

Yimin Lin
Neil Lindquist

Damon McDougall

David Medina
Elia Merzari
Misun Min
Scott Moe
Will Pazner

Malachi Phillips
Thilina Ratnayaka

Kris Rowe
Mark S. Shephard
Cameron W. Smith
Stanimire Tomov
Tim Warburton

September 30, 2021

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of
Energy (DOE) SciTech Connect.

Website http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public
from the following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone 703-605-6000 (1-800-553-6847)
TDD 703-487-4639
Fax 703-605-6900
E-mail info@ntis.gov
Website http://www.ntis.gov/help/ordermethods.aspx

Reports are available to DOE employees, DOE contractors, Energy Technology Data
Exchange representatives, and International Nuclear Information System representatives
from the following source:

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
Telephone 865-576-8401
Fax 865-576-5728
E-mail reports@osti.gov
Website http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government
nor any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or
any agency thereof.

ECP Milestone Report

Port and optimize the CEED software stack to Aurora / Frontier
EA Systems

WBS 2.2.6.06, Milestone CEED-MS37

Office of Advanced Scientific Computing Research
Office of Science

US Department of Energy

Office of Advanced Simulation and Computing
National Nuclear Security Administration

US Department of Energy

September 30, 2021

Exascale Computing Project (ECP) iii CEED-MS37

ECP Milestone Report

Port and optimize the CEED software stack to Aurora / Frontier
EA Systems

WBS 2.2.6.06, Milestone CEED-MS37

Approvals

Submitted by:

Tzanio Kolev, LLNL Date
CEED PI

Approval:

Andrew R. Siegel, Argonne National Laboratory Date
Director, Applications Development
Exascale Computing Project

Exascale Computing Project (ECP) iv CEED-MS37

Revision Log

Version Creation Date Description Approval Date

1.0 September 30, 2021 Original

Exascale Computing Project (ECP) v CEED-MS37

EXECUTIVE SUMMARY

The goal of this milestone was to port the CEED software stack, including Nek, MFEM and libCEED to the
Frontier and Aurora early access hardware, work on optimizing the performance on AMD and Intel GPUs,
and demonstrate impact in CEED-enabled ECP applications.

As part of this milestone, we also performed a number of other activities, including continued optimizations
for CEED applications at scale on Summit, performance evaluation on non-ECP hardware, including the
Fugaku’s A64FX chip and the NVIDIA A100 GPU architecture, exploring the use of just-in-time (JIT)
compilation in applications at scale, the potential of mixed precision optimizations in the CEED discretization
and solver algorithms, and more. During the milestone period, the CEED team released new versions of six
of its packages, including major releases of MFEM, NekRS and OCCA. We also organized the fifth CEED
Annual meeting (CEED5AM) which included nearly 100 researchers from national labs, universities and
industry.

The specific tasks addressed in this milestone were as follows.

• CEED-T13 (ADCD04-81): Multi-node scaling on Summit/Sierra. Demonstrate the use of JIT in
applications at scale.

• CEED-T14 (ADCD04-82): Explore the potential of mixed precision optimizations in the CEED
discretization and solver algorithms.

• CEED-T15 (ADCD04-83): Port Nek, MFEM and libCEED to Frontier/Aurora EA and demonstrate
impact in applications.

• CEED-T16 (ADCD04-84): CEED Annual meeting (CEED5AM).

Exascale Computing Project (ECP) vi CEED-MS37

TABLE OF CONTENTS

Executive Summary vi

List of Figures viii

List of Tables x

1 Introduction 1

2 CEED Applications and Performance on Summit 1
2.1 Non-Deterministic (fast) Kernels for V100 GPUs in MFEM 1
2.2 Breakthrough: MFEM Generated Kernels with Reduced N0.8 on NVIDIA GPUs 1
2.3 ExaWind Atmospheric Boundary Layer Flow Modeling, Convergence and Performance 3
2.4 Rapid Turn-Around Full-Core Reactor Simulations on Summit 3
2.5 Lagrangian Particle Tracking for COVID-19 Research . 10

3 CEED Results on Frontier and Aurora EA Systems 11
3.1 ExaSMR 17× 17 Rod-Bundle Strong Scaling Performance on Spock 11
3.2 MFEM fast Kernels on AMD MI100 GPUs . 11
3.3 libParanumal Performance on AMD MI100 GPUs . 11
3.4 OCCA DPC++ Backend . 14

4 CEED Performance on Fugaku and A100 15
4.1 Nek5000/NekRS Advances on Fugaku . 15
4.2 MFEM’s A64FX Results . 15
4.3 ExaSMR Single Rod Performance on A100 GPUs . 15
4.4 MFEM BP1 Results and Tensor-Core MMA Kernels for A100 GPUs 16

5 Additional Topics 17
5.1 JIT in Applications at Scale . 17
5.2 Potential of Mixed Precision in CEED Algorithms . 21

6 Software Releases 30
6.1 MFEM-4.3 . 30
6.2 NekRS-21.1 . 31
6.3 FMS-0.2 . 31
6.4 MAGMA-2.6.1 . 31
6.5 PUMI-2.2.6 . 31
6.6 OCCA-1.2.0 . 31

7 Other Project Activities 34
7.1 CEED Annual Meeting . 34
7.2 MFEM Community Workshop . 34
7.3 Efficient Sub-Domain Fields and MFEM Integration in Omega h 34
7.4 ECP GitLab CI at OLCF . 35

8 Conclusion 35

Exascale Computing Project (ECP) vii CEED-MS37

LIST OF FIGURES

1 MFEM results for the CEED BP1 benchmark on a single NVIDIA Volta V100 SXM2 GPU on
Lassen using the deterministic (a) and fast non-deterministic (b) kernels. 2

2 MFEM results for the CEED BP3 benchmark on a single NVIDIA Volta V100 SXM2 GPU on
Lassen using the deterministic (a) and fast non-deterministic (b) kernels. 2

3 CEED BP3 benchmark written in UFL and used to generate the XFL MFEM kernels from
Figures 4 and 5. 3

4 Reduced N0.8 obtained with the XFL (a) and XFL vs fast (b) kernels on CEED BP1 benchmark
on a single NVIDIA V100 SXM2 GPU on Lassen. 4

5 Reduced N0.8 obtained with the XFL (a) and XFL vs fast (b) kernels on CEED BP3 benchmark
on a single NVIDIA V100 SXM2 GPU on Lassen. 4

6 ExaWind ABL flows: NekRS mesh convergence using varying spatial resolutions of 3.12m
(n=1283), 1.56m (n=2563), and 0.78m (n = 5123) on the domain [400m × 400m × 400m]. . . 5

7 ExaWind ABL flows: NekRS grid convergence and validation and verification in comparison
to other codes (IMUK, MO, NCAR) for 8h–9h on coarser and denser resolutions. 6

8 Full-core pebble-bed reactor results: (left) velocity distribution in an all-hex mesh comprising
98M elements of order N = 8 for 352K pebbles, run on all of Summit (27648 Nvidia V100s);
(right) average time per step and pressure iteration count as a function of projection-space
dimension, Lmax. 7

9 3D NekRS neknek simulation with two meshes, a rotating cylinder and square annulus shown
with (left) and without (right) the spectral element grids. No sign of mesh imprinting is visible
in the figure on the right. 8

10 Nek5000 simulation based on Navier-Stokes solver coupled with Poisson-Nernst-Planck solver:
molar concentrations of four species with electroneutrality constraints. 9

11 NekRS Lagrangian particle tracking: comparison of the implemented optimizations with
643 × 83 ≈ 134× 106 grid points distributed over 60 GPUs. Solid lines show time to simulate
particles in addition to the cost to simulate the fluid. 10

12 NekRS Lagrangian particle tracking simulations for atmospheric boundary layer flow (GABLS)
and flow dispersion in pebble bed reactor model problems. 10

13 CEED BP1 and BP3 benchmark on a single AMD MI100 GPU for the non-deterministic (fast)
MFEM kernels. 12

14 Performance of the benchParanumal version of the CEED benchmark problem BP1 (top) and
BP3 (bottom) on a single GPU of HPE/Tulip AMD InstinctTM MI100 (left) and a single
NVIDIA V100 PCI-E (right). 13

15 Illustration of a 123 element hexahedral mesh subjected to the piecewise linear Kershaw
coordinate transform used in the CEED BPS5 benchmark problem. 14

16 Left: comparison of throughputs for BPS5 on AMD MI100 (spock) and NVIDIA V100 PCI-E
GPU. Right: Comparison of kernel HBM throughputs for libParanumal BPS5 kernels on
AMD MI100 (Spock) and an NVIDIA V100 PCI-E GPU with discretization: E=243 degree 7
hexahedral elements which amounts to 4.6M global degrees of freedom. 14

17 MFEM BP3 benchmark on one A64FX chip with Fujitsu fcc-4.4.0 (a) and fcc-4.6.1 (b) compilers. 16
18 MFEM BP3 benchmark on one A64FX chip with GCC 10.2 (a) and 11.2 (b) compilers. . . . 16
19 MFEM BP3 benchmark on one A64FX chip with GCC 11.2 ffast-math and OpenMPI 4.1.1

(a) or Fujitsu’s MPI (b). 17
20 MFEM BP1 benchmark on a single NVIDIA A100 GPU for the deterministic (a) and fast

non-deterministic (b) kernels. 18
21 Reduced N0.8 obtained with the XFL kernels on CEED BP1 benchmark on a single NVIDIA

A100 GPU. 18
22 MMA kernels BP1 benchmark on a single NVIDIA A100 GPU. 19
23 Comparison of theoretical speed ups for vector streaming operations and elliptic matrix-

free matrix-vector multiplication for a range of Ndof on a theoretical GPU proxy for the
NVIDIA V100. The model assumes a launch time T0 = 4µs and asymptotic throughput of
Wmax ≈ 800GB/s for all kernels. 22

Exascale Computing Project (ECP) viii CEED-MS37

24 Average cuda-gen GPU time per iteration of CG for different types of kernels 25
25 Average magma-det GPU time per iteration of CG for different types of kernels 25
26 Speedup of cuda-gen backend using single precision . 26
27 Speedup of magma-det backend using single precision . 26
28 Representation of libCEED operator as data flow between the kernels/functions 27
29 Percentage of time spent in individual components of the libCEED operator for the magma-det

backend . 27
30 Speedup for individual components of magma-det backend . 27
31 Speedup for two mixed-precision modes in the cuda-gen operator 28
32 Speedup per iteration of CG for two mixed-precision modes in the cuda-gen backend 28
33 Left: Performance of the rank-k GEMMs typically used in the LU factorizations on Nvidia

V100 GPUs. Right: Performance comparison (computed as (23n
3+ 3n2

2 − n
6) / time in GFlop/s)

of the FP64 solver and the mixed-precision solvers in MAGMA, achieving FP64 accuracy. . 30
34 Left: Performance of the rank-k GEMMs typically used in the LU factorizations on GPUs.

Right: Performance comparison (computed as (2
3n

3 + 3n2

2 − n
6) / time in GFlop/s) of the

FP64 solver and the mixed-precision FP32-FP64 solver in MAGMA, achieving FP64 accuracy.
All experiments use ROCm 4.2. 30

Exascale Computing Project (ECP) ix CEED-MS37

LIST OF TABLES

1 Progression of algorithmic trials. See Figure 8 for Cases (d.L), L=0:30. 7
2 NekRS Strong Scaling using BDF2 with characteristic. 8
3 NekRS Strong Scaling Performance on Summit (top) vs. Spock (bottom). 17×17 rod-bundle

with three layers in z with E=83100, n=28M. 11
4 NekRS performance on a single GPU. 17
5 Parameters for the IEEE FP16, FP32, and FP64 arithmetic precisions, and their respective

peak performances on NVIDIA V100 and AMD MI100 GPUs. “Range” denotes the order of
magnitude of the smallest subnormal (xmin,s), and largest and smallest positive normalized
floating-point numbers. The peak 16-bit performances reported∗ by vendors vary depending
on the instructions and special hardware acceleration used, e.g., the peak performance of 125
Tflop/s for Nvidia V100 uses FP16-TC (tensor cores) with inputs FP16, while the outputs and
the computations are performed in full (FP32) precision. 21

6 Iterations for double precision versus mixed precision AMG preconditioner 24

LIST OF ALGORITHMS

1 Mixed precision, Iterative Refinement Ax = b Solver . 29

Exascale Computing Project (ECP) x CEED-MS37

1. INTRODUCTION

The goal of this milestone was to port the CEED software stack, including Nek, MFEM and libCEED to the
Frontier and Aurora early access hardware, work on optimizing the performance on AMD and Intel GPUs,
and demonstrate impact in CEED-enabled ECP applications.

As part of this milestone, we also performed a number of other activities, including continued optimizations
for CEED applications at scale on Summit, performance evaluation on non-ECP hardware, including the
Fugaku’s A64FX chip and the NVIDIA A100 GPU architecture, exploring the use of just-in-time compilations
in applications at scale and potential of mixed precision optimizations in the CEED discretization and solver
algorithms, and more. During the milestone period, the CEED team released new versions of 6 of its packages,
including major releases of MFEM, NekRS and OCCA. We also organized the fifth CEED Annual meeting
(CEED5AM) which included nearly 100 researchers from national labs, universities and industry.

The specific tasks addressed in this milestone were as follows. CEED-T13 (ADCD04-81): Multi-node scaling
on Summit/Sierra. Demonstrate the use of JIT in applications at scale; CEED-T14 (ADCD04-82): Explore
the potential of mixed precision optimizations in the CEED discretization and solver algorithms; CEED-
T15 (ADCD04-83): Port Nek, MFEM and libCEED to Frontier/Aurora EA and demonstrate impact in
applications; and CEED-T16 (ADCD04-84): CEED Annual meeting (CEED5AM).

2. CEED APPLICATIONS AND PERFORMANCE ON SUMMIT

In this section we review several recent activities in improving the performance of CEED components on
NVIDIA V100 GPUs and multi-node application scaling on Summit.

2.1 Non-Deterministic (fast) Kernels for V100 GPUs in MFEM

The MFEM team has been working on adding new non-deterministic (also called fast) GPU kernels to the
library. A main distinctive feature of these kernels is to avoid the cost of two kernel launches: the restriction’s
Mult and MultTranspose operations, which were used to scatter and gather the data to the benchmark core
kernels. These prefix and postfix kernels were also useful in order to avoid atomic instructions and to ensure
determinism, which is sometimes expected by MFEM applications. Such kernels are available by simply
adding on the command line the fast option keyword when specifying the device used at runtime. Figures 1
and 2 demonstrate the speedup of using these new fast kernels on V100 GPUs.

2.2 Breakthrough: MFEM Generated Kernels with Reduced N0.8 on NVIDIA GPUs

The MFEM team has been performing research in generating optimized kernels from general mathematical
description, matching the performance of hand-tuned ones. This approach is capable to offer a sustainable
way to generate finite element kernels, as well as adapting the knowledge capitalized during the CEED project.
The starting point is the Unified Form Language (UFL) which has been formally described in 2012 and
is well used in the finite element Python community through multiple projects (FEniCS, Firedrake). The
motivation is to offer the best integrated finite element kernels for all finite-element-based applications, by
compiling idiomatic mathematical variational formulations into low-level C++ kernels, reducing execution
time by specializing to known tensor shapes.

The underlying idea is to augment traditional compiler representations with a data-aware graph-based
structure: it allows the MFEM team to represent kernels as graph nodes with their data dependencies
exposed. New performance optimizations can then be realized through graph transformations that preserve
the behavioral equivalence of the calculations being performed, ensuring application correctness. Enabling
this graph-based representation provides significant potential for optimization both in terms of kernel launches
and memory bandwidth usage. For example, in many applications kernels can be fused together and memory
can be reused which reduce both kernel launches and memory bandwidth load.

This way of generating optimized high-order finite element kernels is called XFL, for Accelerated Form
Language. An example of what the input code for the CEED BP3 benchmark looks like in the UFL
specification is presented in the listing in Figure 3.

Exascale Computing Project (ECP) 1 CEED-MS37

103 104 105 106 107
0

1

2

3

4

Degrees of Freedom (DOF)

Th
ro
ug

hp
ut

(G
DO

F/
s)

MFEM BP1 @ Lassen V100

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

(a) Deterministic kernels

103 104 105 106 107
0

1

2

3

4

Degrees of Freedom (DOF)

Th
ro
ug

hp
ut

(G
DO

F/
s)

MFEM BP1 FAST @ Lassen V100

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

(b) fast non-deterministic kernels

Figure 1: MFEM results for the CEED BP1 benchmark on a single NVIDIA
Volta V100 SXM2 GPU on Lassen using the deterministic (a) and fast non-
deterministic (b) kernels.

103 104 105 106 107
0

0.5

1

1.5

2

2.5

3

Degrees of Freedom (DOF)

Th
ro
ug

hp
ut

(G
DO

F/
s)

MFEM BP3 @ Lassen V100

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7

(a) Deterministic kernels

103 104 105 106 107
0

0.5

1

1.5

2

2.5

3

Degrees of Freedom (DOF)

Th
ro
ug

hp
ut

(G
DO

F/
s)

MFEM BP3 FAST @ Lassen V100

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

(b) fast non-deterministic kernels

Figure 2: MFEM results for the CEED BP3 benchmark on a single NVIDIA
Volta V100 SXM2 GPU on Lassen using the deterministic (a) and fast non-
deterministic (b) kernels.

For CEED applications, the rate of work is measured in billions-DOFs-per-second (GDOF/s, or gigadofs).
Two of the principal metrics of interest are the peak rate of work per unit resource (rmax) and the local
problem size on the node required to realize 80% percent of the peak rate of work per unit resource (N0.8).
As explained in [4], users are typically interested in reduced time-to-solution by increasing the number of
nodes until parallel efficiency reaches an intolerable level (about 80%). Improving the N0.8 directly allows
to reduce the time-to-solution: the smaller the value of N0.8, the more processors that can be used and the

Exascale Computing Project (ECP) 2 CEED-MS37

1 # CEED 3D Bake -off BP3

2 N = 32

3 order = 6

4

5 # Define a finite element space on the mesh

6 fe = FiniteElement("Lagrange", hexahedron , order)

7 fes = FunctionSpace(UnitHexMesh(N,N,N), fe)

8

9 # Define the boundary conditions

10 bc = DirichletBC(fes)

11

12 # Define the solution vector x as a finite element grid function

13 x = Function(fes)

14 x = 0.0

15

16 # Define the trial and test functions that will be used in the forms

17 u = TrialFunction(fes)

18 v = TestFunction(fes)

19

20 # Set up the linear form b(.)

21 b = v*dx

22

23 # Set up the parallel bilinear form a(.,.)

24 a = inner(grad(u), grad(v))*dx

25

26 # Benchmark and solve the linear system a x = b

27 benchmark(a == b, x, bc)

Figure 3: CEED BP3 benchmark written in UFL and used to generate the XFL
MFEM kernels from Figures 4 and 5.

faster the calculation will run.
Therefore the results with the new MFEM XFL kernels presented in Figures 4 and 5, are of particular

interest due to the improved rmax and N0.8 values for both the BP1 and BP3 CEED benchmarks. While
the rmax for BP1 at lower orders present an interesting speedup, the N0.8 are more noticeably reduced by a
factor of about 10 for BP1.

2.3 ExaWind Atmospheric Boundary Layer Flow Modeling, Convergence and Performance

In collaboration with the ECP ExaWind team at NREL, we have studied atmospheric boundary layer (ABL)
flows relevant to wind-farm modeling on DOE’s pre-exascale platforms and NREL’s Eagle computer. Through
this collaboration we are conducting cross-verification and validation of Nek5000/RS and AMRWind. Our
focus is the GABLS1 benchmark problem defined on a fixed computational domain [400m × 400m × 400m].

The objective of the code comparison is to reduce scaling bottlenecks in each code and to identify turbulence
modeling effects that impact important statistics such as the boundary-layer height and turbulence intensity.
We have made extensive performance comparisons between Nek5000/RS and AMRWind and continue to
optimize their performance. A series of strong- and weak-scaling studies on advanced computing platforms
monitors average time-per-step and the ratio of simulation time to real time. We also contrast the results
as a function of resolution, for a variety LES modeling approaches, wall models, and boundary conditions.
Low-order statistics, spectral analysis, and turbulent structure analysis give insight to the importance of
these parameters. The results will be submitted as a journal paper in next quarter.

Figures 6 and 7 demonstrate convergence results of Nek5000/RS at varying grid resolutions in the range
of 1.56m–0.19m for a fixed computational domain [400m × 400m × 400m]. We include in the convergence
studies comparisons to existing data from NCAR, IMUK, and MO, where the finest grid resolution is 0.39m.

2.4 Rapid Turn-Around Full-Core Reactor Simulations on Summit

In this section we summarize several developments related to NEAMS reactor simulations on Summit,
including performance optimization for full-core pebble-bed models, GPU multi-mesh simulations and new

Exascale Computing Project (ECP) 3 CEED-MS37

103 104 105 106 107
0

1

2

3

4

5

Degrees of Freedom (DOF)

Th
ro
ug

hp
ut

(G
DO

F/
s)

MFEM BP1 XFL @ Lassen V100

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

(a) Reduced N0.8 with XFL kernels

103 104 105 106 107
0

1

2

3

4

5

n0.8
10

Degrees of Freedom (DOF)

Th
ro
ug

hp
ut

(G
DO

F/
s)

MFEM BP1 XFL vs FAST @ V100

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

(b) XFL vs fast kernels

Figure 4: Reduced N0.8 obtained with the XFL (a) and XFL vs fast (b) kernels
on CEED BP1 benchmark on a single NVIDIA V100 SXM2 GPU on Lassen.

103 104 105 106 107
0

0.5

1

1.5

2

2.5

3

Degrees of Freedom (DOF)

Th
ro
ug

hp
ut

(G
DO

F/
s)

MFEM BP3 XFL @ Lassen V100

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

(a) Reduced N0.8 with XFL kernels

103 104 105 106 107
0

0.5

1

1.5

2

2.5

3

n0.8
10

Degrees of Freedom (DOF)

Th
ro
ug

hp
ut

(G
DO

F/
s)

MFEM BP3 XFL vs FAST @ Lassen V100

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

(b) XFL vs fast kernels

Figure 5: Reduced N0.8 obtained with the XFL (a) and XFL vs fast (b) kernels
on CEED BP3 benchmark on a single NVIDIA V100 SXM2 GPU on Lassen.

solver Development for molten salt reactors.

NEAMS Full-Core Pebble-Bed Performance Optimization. The main target of our NEAMS study
is the full core for the pebble bed reactor (Figure 8, left), which has 352,625 spherical pebbles and a
fluid mesh comprising E = 98, 782, 067 elements of order N = 8 (n ≈ 51B). In this case, we consider the
characteristics-based timestepping with ∆t = 4.e-4 or 8.e-4, corresponding to respective Courant numbers of
CFL ≈ 2 and 4. Table 1 lists the battery of tests considered for this problem, starting with the single-sweep
Chebyshev-Additive Schwarz (1-Cheb-ASM) pMG smoother, which is the default choice for smaller (easier)

Exascale Computing Project (ECP) 4 CEED-MS37

(a) NekRS ABL: (left) streamwise velocity and (right) potential temperature at z=10m, 50m, 100m.

(b) NekRS ABL: streamewise velocity u, z=10m, at resolution n=1283, 2563, 5123

(c) NekRS ABL: vertical velocity w, z=10m, at resolution n=1283, 2563, 5123

(d) NekRS ABL: potential temperature θ, z=10m, at resolution n=1283, 2563, 5123

Figure 6: ExaWind ABL flows: NekRS mesh convergence using varying spatial
resolutions of 3.12m (n=1283), 1.56m (n=2563), and 0.78m (n = 5123) on the
domain [400m × 400m × 400m].

problems. Unfortunately, this choice and the two-smoothings Chebyshev-Jacobi (2-Cheb-Jac) option yield very
high coarse-grid solve costs because of the relative frequency in which the full V-cycle must be executed. (For

Exascale Computing Project (ECP) 5 CEED-MS37

(a) NekRS grid convergence for mean velocity magnitude at t=8h and 9h.

(b) NekRS time-space mean velocity magnitude for t=7h–8h and 8h–9h.

Figure 7: ExaWind ABL flows: NekRS grid convergence and validation and
verification in comparison to other codes (IMUK, MO, NCAR) for 8h–9h on
coarser and denser resolutions.

this problem, the coarse-grid system has ≈ 98M/27K ≈ 3600 degrees-of-freedom per V100.) Analysis of the
standard NekRS output suggested that more smoothings at the finer levels would alleviate the communication
burden incurred by the coarse-grid solves for problems at this scale.

The first step in optimization was thus to increase the number of smoothings (2-Cheb-ASM) and to
increase the number of pMG levels to four, with polynomial orders N=8, 6, 4, 1 (where 1 is the coarse grid).
These steps yielded a 1.6× speed-up over the starting point. Subsequently, we boosted the number of prior
solutions to use as an approximation space for the pressure initial guess from L = 8 to 30, which yielded an
additional factor of 1.7, as indicated in Figure 8.

Given the success of projection and additional smoothing, which lowered the FlexCG iteration counts
to <6, it seemed clear that GMRES would be viable. A downside of GMRES is that the memory footprint
scales as K, the maximum number of iterations and the work (and potentially, communication) scales as K2.
With K bounded by 6, these complexities are not onerous and one need not worry about losing the projective
property of GMRES by having to use a restarted variant. Moreover, with so few vectors, the potential of
losing orthogonality of the Arnoldi vectors is diminished, which means that classical Gram-Schmidt can
be used and one thus safely use a communication minimal single all-reduce on a vector of length < K to
complete the Arnoldi orthogonalization step.

The next optimizations focused on the advection term. First, we reduced the number of quadrature points
from Nq = 13 to 11 (in each direction). Elevated quadrature is necessary for stability, but not for accuracy.
While one can prove stability for Nq ≥ 3N/2 [15], it is not mandatory and, when using the characteristics
method, which visits the advection operator at least four times per timestep, it can pay to reduce Nq as long
as the flow remains stable. Second, we increased ∆t by a factor of 2, which requires 2 subcycles to advance
the hyperbolic advection operator (i.e., doubling its cost), but does not double the number of velocity and

Exascale Computing Project (ECP) 6 CEED-MS37

Figure 8: Full-core pebble-bed reactor results: (left) velocity distribution in an
all-hex mesh comprising 98M elements of order N = 8 for 352K pebbles, run on
all of Summit (27648 Nvidia V100s); (right) average time per step and pressure
iteration count as a function of projection-space dimension, Lmax.

pressure iterations. Case (f) in Table 1 shows that the effective cost (based on the original ∆t) is tstep = 0.188
s. In case (g) we arrive almost at tstep = 0.18s by turning off all I/O to stdout for all timesteps modulo 1000.
The net gain is a factor of 3.8 over the starting (default) point. Most importantly, with these optimizations,
it is now possible to simulate a flow-through time of a full reactor core in six hours of wall-clock time on
Summit.

Table 2 shows three strong scaling studies for the pebble bed at different levels of optimization, with the
final one corresponding to Case (f) of Table 1. The limited memory on the GPUs means that we can only
scale from P = 9216 to 27648 for these cases and in fact cannot support L = 30 at P = 9216, which is why
that value is absent from the table. As noted earlier, a fair comparison for the last set of entries would be
to run the P = 9216 case with a smaller value of L—it would perform worse, which would give a scaling
advantage to the L = 30 case. This advantage is legitimate, because L = 30 is an improved algorithm over
(say) L = 8, which leverages the increase memory resources that come with increasing P .

Major Algorithmic Variations, 352K Pebbles, P=27648
Case Solver Smoother L Nq ∆t vi pi tstep
(a) FlexCG 1-Cheb-ASM:851 8 13 4e-4 3.6 22.8 .68
(b) FlexCG 2-Cheb-Jac:851 8 13 4e-4 3.6 17.5 .557
(c) ” 2-Cheb-ASM:851 8 13 4e-4 3.6 12.8 .468
(d.8) ” 2-Cheb-ASM:8641 8 13 4e-4 3.6 9.1 .426
(d.L) ” 2-Cheb-ASM:8641 0–30 13 4e-4 3.6 5.6 .299
(e) GMRES ” 30 13 4e-4 3.5 4.6 .240
(f) ” ” 30 11 8e-4 5.7 7.2 .376
(g) ” ” 30 11 8e-4 5.7 7.2 .361 (no I/O)

Table 1: Progression of algorithmic trials. See Figure 8 for Cases (d.L), L=0:30.

Rapid Turn-Around. Remarkably, the performance results presented here imply that it is now possible to
simulate a single flow-through time for a full core in less than six hours when using all of Summit for these
simulations. The analysis proceeds as follows. In the nondimensional units of this problem, the domain height
is Lz = 130 units, while the mean flow speed in the pebble region is U ≈ 1/φ, where φ ≈ 0.36 is the void
fraction in the packed bed. The nondimensional flow-through time is thus Lz/U ≈ 130× 0.36 = 46.6 (modulo
a reduction of the flow speed in the upper and lower plena). The timestep size from the final two rows of
Table 5 is 8× 10−4, corresponding to 58250 steps for a single flow-through time, which, at 0.361 seconds per
step, corresponds to 5.84 hours of wall-clock time per flow-through time.

NEAMS NekNek Multimesh on GPUs towards Kairos Power.
Nek5000/RS has support for overset grids that can greatly simplify meshing requirements, particularly

Exascale Computing Project (ECP) 7 CEED-MS37

NekRS Strong Scaling: 352K pebbles, E=98M, n=50B
N = 8, Nq = 13, ∆t = 4.e-4, L = 8, 1-Cheb-Jac:851

Node GPU n/P vi pi tstep Eff
1536 9216 5.4M 3.6 17.3 .97 1.00
2304 13824 3.6M 3.6 18.0 .84 76.9
3072 18432 2.7M 3.6 16.6 .75 64.6
3840 23040 2.1M 3.6 19.6 .67 57.9
4608 27648 1.8M 3.6 17.5 .55 58.7

N = 8, Nq = 13, ∆t = 4.e-4, L = 8, 1-Cheb-ASM:851
Node GPU n/P vi pi tstep Eff
1536 9216 5.4M 3.6 11.6 .81 100
2304 13824 3.6M 3.6 12.3 .65 83.0
3072 18432 2.7M 3.6 12.3 .71 57.0
3840 23040 2.1M 3.6 13.5 .54 60.0
4608 27648 1.8M 3.6 12.8 .46 58.6

N = 8, Nq = 11, ∆t = 8.e-4, L = 30, 2-Cheb-ASM:8641
Node GPU n/P vi pi tstep Eff
1536 9216 5.4M - - - -
2304 13824 3.6M 5.7 7.2 .55 100
3072 18432 2.7M 5.7 7.2 .56 73.6
3840 23040 2.1M 5.7 7.2 .39 84.6
4608 27648 1.8M 5.7 7.2 .36 76.3

Table 2: NekRS Strong Scaling using BDF2 with characteristic.

for cases involving rotating geometries or domains having widely disparate resolution requirements in close
proximity. Another common use case arises when one wants to merge meshes from two or more subregions that
have complex domain features, each of which are readily meshed individually. Overset grids obviate the need
to make the combined meshed conforming. This latter use case is quite common in reactor thermal-hydraulics
modeling. For example, if one wants a detailed mesh that resolves a complex spacer grid to merge with a
larger mesh to resolve turbulence within fuel rod bundles downstream of the spacer grid.

The overset grid support requires resolution of several technical issues relating to mass conservation,
timestepping, and parallelism which have been addressed for the SEM in CEED-supported work [17, 18] and
in earlier efforts by Merrill et al. [16]. The most critical technology, however, is to have fast and robust general
interpolation, in parallel. Nek’s gslib library has provided this support for over a decade and has demonstrated
scalability to millions of ranks. For interpolation, there are two parts: findpts(), and findpts eval(). The
former identifies the processor, element, and local element coordinates (p∗, E∗, r∗) corresponding to any
requested point x∗ ∈ Ω. The latter uses these computational coordinates to evaluate u∗ := u(x∗) for any
field, u. In the case of nonmoving grids, findpts() is called only once, whereas findpts eval() is called on

Figure 9: 3D NekRS neknek simulation with two meshes, a rotating cylinder
and square annulus shown with (left) and without (right) the spectral element
grids. No sign of mesh imprinting is visible in the figure on the right.

Exascale Computing Project (ECP) 8 CEED-MS37

every timestep to set the boundary values along the subdomain interface in the overlapping regions.
ANL summer student Neil Lindquist (UTK) has updated both findpts(), and findpts eval() to run on

GPUs when called within NekRS. The principal advantage of this development is that the volumetric data
does not need to be moved to the host in order to do the interpolation. Neil has also extended NekRS to
have basic support for the overset grids that are required by our industrial partners. Figure 9 illustrates the
results for a 3D test problem with a rotating cylindrical mesh embedded in a fixed outer mesh.

NekRS and Nek5000 are being used by Kairos Power to develop high fidelity datasets for pebble bed
configurations with liquid salts. The data will be used to benchmark faster running models, including RANS
models and porous media models. Recently, the Nek5000 overset grid variant (neknek) has been used by
Kairos Power for investigate complex pebble bed configurations that involve not just a pebble bed but also
flow bypass through graphite blocks. This use case is particularly important, as bypass flow is a critical
concern not only for liquid salt reactors but also for traditional gas reactors. Support for overset grids with
NekRS will be of significant value in future high-fidelity thermal-hydraulics simulations, enabling transition
to larger models that are more representative of the configurations of interest to Kairos Power.

NEAMS Molten Salt Reactor Solver Development. With ANL summer student Yimin Lin (Rice
University) and in collaboration with the Argonne NEAMS team, we are developing Navier-Stokes (NS) solver
coupled Poisson-Nernst-Planck (PNP) solver for the study of molten salt reactor systems. We implemented
electroneutrality constraints into NekCEM’s existing PNP solver and translated this into Nek5000 for a new
NS-PNP solver. We validated the results with NekCEM for the PNP part.

We consider fluid interacting with ions governed by the coupled NS-PNP solver written as

∂u

∂t
+ u · ∇u− ν∇2u +∇p = qE, (1)

∇ · u = 0, (2)

∂ci
∂t

+∇ · (Fi + ciu) = 0, (3)

−∇ ·
(

M∑
i=1

µizici∇φ
)

= ∇ ·
(

M∑
i=1

ziDi∇ci
)
, (4)

where ν is the fluid viscosity and the diffusion flux is defined by

Fi = −Di

(
∇ci + zici

e

kBT
∇φ
)
. (5)

Figure 10 demonstrates the simulations for four species with electroneutrality. Currently we are developing
improved implementation for the electroneutrality that will be consistent with the boundary conditions for
multiple species.

Figure 10: Nek5000 simulation based on Navier-Stokes solver coupled with
Poisson-Nernst-Planck solver: molar concentrations of four species with elec-
troneutrality constraints.

Exascale Computing Project (ECP) 9 CEED-MS37

Figure 11: NekRS Lagrangian particle tracking: comparison of the implemented
optimizations with 643 × 83 ≈ 134 × 106 grid points distributed over 60 GPUs.
Solid lines show time to simulate particles in addition to the cost to simulate the
fluid.

2.5 Lagrangian Particle Tracking for COVID-19 Research

Multiple groups are using Nek5000/RS to track aerosol dispersion in flow situations related the spread
of COVID-19 and other airborne viruses (e.g., [3, 8, 14]). Such dispersion can be assessed by monitoring
scalar field evolution [3, 8] or by directly tracking Lagrangian particles [14]. Nek5000 currently supports
state-of-the-art one-, two-, and four-way coupling for particle tracking through the ppiclF library developed
by David Zwick at the University of Florida [22]. The library makes extensive use of the parallel findpts and
findpts eval routines from Nek’s gslib library. ANL summer student Neil Lindquist (UTK) has ported these
utilities to NekRS, which allows these interpolation utilities to work with the data directly on the device,
rather than moving data to the host for interpolation.

Neil has extended the interpolation capability to support efficient particle tracking in NekRS (currently,
using a simple Lagrangian model, ẋ∗ = u(x∗)). From an initial “host-only” implementation, the optimized
version is almost two orders of magnitude faster for a 5123 NekRS simulation running 3.3M particles, as
shown in Figure 11. Among the many developments, one of the most important is to migrate particles to the
GPU where the data resides; in the case of GPUs the subdomains are relatively large such that particles
spend many timesteps between migrations and the associated overhead is thus readily amortized. We see in
the case of Figure 11 that this strategy yields a cost per particle update that is only four times greater than
the (fast, Eulerian) Navier-Stokes update when the number of particles equals the number of grid points.
Figure 12 illustrates particle dispersion in three other applications, namely, a turbulent atmospheric boundary

Figure 12: NekRS Lagrangian particle tracking simulations for atmospheric
boundary layer flow (GABLS) and flow dispersion in pebble bed reactor model
problems.

Exascale Computing Project (ECP) 10 CEED-MS37

layer flow and pebble-bed reactor model having 146 and 44257 spherical pebbles.

3. CEED RESULTS ON FRONTIER AND AURORA EA SYSTEMS

In this section we report recent porting and performance result from our work on early-access (EA) systems
for Frontier and Aurora, using AMD and Intel GPUs respectively.

3.1 ExaSMR 17× 17 Rod-Bundle Strong Scaling Performance on Spock

With a new release of NekRS 21.1, we performed strong-scaling studies of a 17×17 pin bundle of the type. The
mesh comprises 27700 elements in the x-y plane and is extruded in the axial (z) direction with 3 layers. In
this study, we do not use characteristics-based timestepping, but instead use a more conventional semi-implicit
scheme that requires CFL 0.5 because of the explicit treatment of the nonlinear advection term. Table 3
presents strong scaling results on both Summit and Spock for a case with E = 83100 and N = 7 (n = 28M)
for n/P ranging from 5.7M down to 1.7M. We see that 68% efficiency using n/P = 2.3M on Spock while 82%
efficiency using n/P = 2.0M on Summit.

ExaSMR results on Summit (NVIDIA V100 GPUs), 17×17 Rod-Bundle
Node GPU n/P vi pi tstep Eff

1 5 5.7007e+06 3 1 1.1652e-01 100
1 6 4.7506e+06 3 1 9.7226e-02 99
2 8 3.5629e+06 3 1 7.7673e-02 93
2 10 2.8503e+06 3 1 6.7980e-02 86
3 14 2.0360e+06 3 1 5.0815e-02 82
3 16 1.7815e+06 3 1 4.8664e-02 75
3 18 1.5835e+06 3 1 5.9795e-02 54

ExaSMR results on Spock (AMD MI100 GPUs), 17×17 Rod-Bundle
Node GPU n/P vi pi tstep Eff

2 5 5.7007e+06 3 1 1.5523e-01 100
2 6 4.7506e+06 3 1 1.3193e-01 98
2 8 3.5629e+06 3 1 1.0567e-01 92
3 12 2.3753e+06 3 1 9.5255e-02 68
4 16 1.7815e+06 3 1 7.6610e-02 63

Table 3: NekRS Strong Scaling Performance on Summit (top) vs. Spock
(bottom). 17×17 rod-bundle with three layers in z with E=83100, n=28M.

3.2 MFEM fast Kernels on AMD MI100 GPUs

Figure 13 present the performance of the new MFEM fast kernels on a single AMD MI100 GPU hosted on
the Spock Frontier EA system for the BP1 and BP3 CEED benchmarks.

3.3 libParanumal Performance on AMD MI100 GPUs

The libParanumal package developed under CEED includes implementations for the CEED BP and BPS
bake-off problems consisting of solving L2 mass projection or the Poisson equation posed on a cube domain
with Dirichlet boundary conditions and discretized with hexahedral finite elements.

For this phase of preparing for the Frontier exascale system we targeted test platforms include an AMD
MI100 GPU hosted on the Spock Frontier EA system and we used a system equipped with the much more
widely available NVIDIA V100 PCI-E variant as a baseline. The first component of this activity was to
calibrate our expectations. On the one hand we anticipate that the superior memory bandwidth of the MI100
which has a peak theoretical HBM bandwidth of 1200GB/s with sustained achievable streaming in excess of
1000GB/s will yield higher throughput for kernels with low arithmetic intensity than the V100 which has
peak theoretical HBM bandwidth of 900GB/s and achievable streaming throughput of over 800GB/s (see
our technical report [6] for a detailed study of the attainable streaming throughputs on V100 and MI100
GPUs). On the other hand the aggregated on-core shared memory capacity of the MI100 is approximately

Exascale Computing Project (ECP) 11 CEED-MS37

103 104 105 106 107
0

1

2

3

4

Degrees of Freedom (DOF)

Th
ro
ug

hp
ut

(G
DO

F/
s)

MFEM BP1 Fast @ Spock MI100

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

(a) BP1 kernels

103 104 105 106 107
0

0.5

1

1.5

2

2.5

Degrees of Freedom (DOF)

Th
ro
ug

hp
ut

(G
DO

F/
s)

MFEM BP3 Fast @ Spock MI100

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

(b) BP3 kernels

Figure 13: CEED BP1 and BP3 benchmark on a single AMD MI100 GPU for
the non-deterministic (fast) MFEM kernels.

the same as the V100 GPU which can be the main performance limiting factor when running kernels with
highly collaborative threads communicating via the local data share. The matrix-vector kernels at the heart
of the BP5 and BPS5 benchmark implementations rely critically on shared memory for thread-block level
collaboration [20], thus although the matrix-vector operations are nominally HBM memory bound the actual
achieved performance may be lower than the theoretical peak of the MI100 may suggest.

The CEED BP benchmarks are designed to test throughput performance and portability of core finite
element kernels on both CPU and GPU. In this work we have focused on maintaining appropriate relatively
high performance of the libParanumal BP solvers when transitioning from the NVIDIA V100 to the AMD
MI100 GPU. The CEED team collaborated closely with AMD Research to optimize the libParanumal compute
kernels so that our kernels which were previously optimized for NVIDIA GPUs can also run efficiently on
AMD MI GPUs with minimal architecture specific tweaks. In Figure 14 we show a comparison of the
throughput on these two GPUs for the CEED BP1 and BP3 problems1 We see that both the BP1 and BP3
throughputs for both GPUs is similar with some minor variations at each order related to the specifics of
the way that the compilers generate code and the different device memory throughputs and on-core shared
memory capabilities. The experiments confirmed our model predictions based on critical performance limiters
for both GPUs.

The CEED BPS benchmarks are made more challenging than the BP problems by the inclusion of a
Kershaw coordinate transform [12] that results in geometrically distorted elements and also the requirement to
use preconditioners to accelerate convergence of the iterative solver. A sample mesh subject to the piece-wise
linear Kershaw map is illustrated in Figure 15.

Initial experiments by the CEED team revealed that depending on the severity of the distortion it could
take hundreds of preconditioned conjugate gradient iteration to converge. Over the reporting period we
have worked to improve the preconditioning capabilities of libParanumal to specifically address this type of
situation. For instance we enhanced the existing heterogeneous multigrid by re-engineering the p-multigrid
and algebraic multigrid implementations including the addition of highly customized sparse approximate
inverse based smoothers. These improvements resulted in substantial reductions in both iteration counts and
in computational time for solving the Kershaw mapped BPS problems. Considerable additional speed ups
were achieved when combining the new smoothers with reduced precision for the multigrid cycle (see Section

1The CEED BP1 and BP3 were configured with number of quadrature points in each hexahedral axis to be the polynomial
degree plus two.

Exascale Computing Project (ECP) 12 CEED-MS37

103 104 105 106 107 108
0

1

2

3

4

5
·109

Degrees of freedom

T
h

ro
u

gh
p

u
t

(D
oF

s
p

er
se

co
n

d
)

BP1 AMD MI100 (OCCA:HIP)

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

103 104 105 106 107 108
0

1

2

3

4

5
·109

Degrees of freedom

BP1 NVIDIA V100 SXM2 (OCCA:CUDA)

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

103 104 105 106 107 108

0.5

1

1.5

2

2.5

3
·109

Degrees of freedom

T
h

ro
u

gh
p

u
t

(D
o
F

s
p

er
se

co
n

d
)

BP3 AMD MI100 (OCCA:HIP)

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

103 104 105 106 107 108

0.5

1

1.5

2

2.5

3
·109

Degrees of freedom

BP3 NVIDIA V100 (OCCA:CUDA)

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

Figure 14: Performance of the benchParanumal version of the CEED benchmark
problem BP1 (top) and BP3 (bottom) on a single GPU of HPE/Tulip AMD
InstinctTM MI100 (left) and a single NVIDIA V100 PCI-E (right).

5.2 for performance projections) and an error indicator based stopping criterion to avoid over solving the
linear system

In Figure 16 we show experimentally measured throughputs for a typically configured CEED BPS5 running
a sequence of problems of different sizes on both the MI100 and V100 using the same kernels expressed in the
OCCA kernel language (OKL). Notably the MI100 and V100 have very similar asymptotic throughput at
larger problem sizes with the former overtaking the latter for sufficiently large problems. The performance
curves show some differences for smaller problem size indicating a slightly higher launch overhead for the
AMD GPU despite the Spock kernels being launched with the experimental AMD DIRECT DISPATCH option
enabled. Also in Figure 16 we show the per kernel throughput for a fixed size mesh with 243 elements of
degree 7. We see for this problem with approximately 4.7M global degrees of freedom that the streaming
kernels running on the MI100 are consistently faster than the V100. The picture is a little more mixed for
the matrix-vector kernels there is some variants in which V100 outperforms the MI100. Overall these results
suggest that for sufficiently large problems the MI100 and V100 are relatively well matched as predicted by
their similar aggregate on-core shared memory capacity which dictates their overall occupancy for the most
time consuming matrix-vector kernels.

Finally, we note that the results in this section are subject to change as the kernel implementations and

Exascale Computing Project (ECP) 13 CEED-MS37

Figure 15: Illustration of a 123 element hexahedral mesh subjected to the
piecewise linear Kershaw coordinate transform used in the CEED BPS5 benchmark
problem.

0 1 2 3 4 5 6

Ndofs 10
6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

N
d

o
fs

*
N

it
e

ra
ti
o

n
s
/t

im
e

10
8 BPS5 throughput per iteration (V100 v. MI100)

NVIDIA V100 N=2

NVIDIA V100 N=3

NVIDIA V100 N=4

NVIDIA V100 N=5

NVIDIA V100 N=6

NVIDIA V100 N=7

AMD MI100 N=2

AMD MI100 N=3

AMD MI100 N=4

AMD MI100 N=5

AMD MI100 N=6

AMD MI100 N=7

BPS5 Kernel memory throughputs

0 200 400 600 800 1000 1200

HBM read+write throughput (GB/s)

MassMatrixOperatorHex3D

amxpy

axpy

ccsrCompress.kd

ccsrSpMV1.kd

ccsrSpMV2.kd

convertD2F

convertF2D

coordMapKernel

dGEMV

ellipticAddBCHex3D

ellipticError3D

ellipticFP32AxN02

ellipticFP32AxN04

ellipticFP32AxN07

ellipticFP64AxN02

ellipticFP64AxN04

ellipticFP64AxN07

ellipticPartialPreconCoarsenHex3D

ellipticPartialPreconProlongateHex3D

ellipticRhsBCHex3D

ellipticRhsHex3D

ellipticSetLocalNodeKernel

ellipticStrongSurfaceResidualHex3D

ellipticStrongVolumeResidualHex3D

gather

gather

innerProd

norm2

scale

scatter

sum

updatePCG

zaxpy

Spock AMD MI100

NVIDIA V100 PCI-E

Figure 16: Left: comparison of throughputs for BPS5 on AMD MI100 (spock)
and NVIDIA V100 PCI-E GPU. Right: Comparison of kernel HBM throughputs
for libParanumal BPS5 kernels on AMD MI100 (Spock) and an NVIDIA V100
PCI-E GPU with discretization: E=243 degree 7 hexahedral elements which
amounts to 4.6M global degrees of freedom.

structure of the multigrid hierarchy are further optimized for AMD GPUs.

3.4 OCCA DPC++ Backend

OCCA v1.2.0 (see Section 6.6) includes a new DPC++ backend made possible by a joint project between
ALCF, Intel, and Shell. The main highlights of the DPC++ backend are:

• Using freely available DPC++ implementations, this backend can be run on CPUs, GPUs, and FPGAs.

Exascale Computing Project (ECP) 14 CEED-MS37

• Memory allocation/deallocation is handled using the DPC++ USM functions, which are now part of
the SYCL 2020 standard.

• OKL kernels are translated to lambda functions for transparency and performance purposes.

• The OKL @outer and @inner loop indices are mapped to work-group IDs and work-items, respectively
in a similar fashion to OpenCL.

During development the Intel oneAPI DPC++ compiler was used. Intel GPU hardware was used for testing,
including the JLSE Aurora testbeds at ALCF. In the near future testing will be expanded to included other
DPC++ implementations and other vendor hardware. The main contributors to the development of the
DPC++ backend were Anoop Madhusoodhanan Prabha (Intel), Cedric Andreolli (Intel), Kris Rowe (ALCF),
Phillipe Thierry (Intel), Saumil Patel (ALCF). Future work includes profiling and optimizing build + launch
of the inlined lambdas.

4. CEED PERFORMANCE ON FUGAKU AND A100

In this section we report CEED performance results on non-ECP hardware, including the Fugaku’s A64FX
chip and the NVIDIA A100 GPU architecture.

4.1 Nek5000/NekRS Advances on Fugaku

The principal activities for Nek5000/RS on Fugaku have been the development of a parallel reader that has
no MPI-I/O dependencies and initial port and tuning of NekRS to the A64FX architecture.

Half-scale system access to Fugaku was awarded to the Nek team in late March, 2021. We were able
to submit jobs for Nek5000 using 1/2 Fugaku but experienced problems in reading the meshes for larger
jobs because Fugaku did not have MPI-I/O support. Jobs on more than 2000 nodes would stall at the mesh
reading stage. For this reason, we implemented a new stand-alone parallel reader which will be utilized in
both Nek5000 and NekRS. An Argonne Summer Intern, Yimin Lin (Rice University) implemented the new
distributed reader including single-interface support for different files (rea, par, re2, map, ma2, co2) used in
Nek5000/NekRS. Reading is done by a user-defined number of ranks and the requisite parallel communication
is performed in logP time using communication utilities in gslib. The new code has been tested on Summit
at small scale and will be tested up to the full-scale system on Summit before testing on Fugaku.

More recently, NekRS has been ported to Fugaku and, with significant help from the RIKEN team
(Miwako Tsuji and Mitsuhisa Sato), the principal BK5 kernel has been highly optimized. We will continue
this collaboration and anticipate additional speedup in the future. The team intends to submit an SC2022
paper on this topic.

4.2 MFEM’s A64FX Results

Following the initial work in 2021, the CEED team at LLNL continued optimizing the MFEM library to the
Fugaku architecture and performed an incremental performance evaluation. The BP3 benchmark used is
described in the CEED milestone report CEED-MS6 [7]. It is a scalar PCG with stiffness matrix: we solve
Au = f , where A is the Poisson operator.

Different compiler configurations were tested initially: Fujitsu’s C++ compiler (FCC 4.4.0a 20210127), as
well as the GNU GCC 10.2.0. Performance updates with Fujitsu’s C++ compiler (FCC 4.6.1 20210812) and
the GNU GCC 11.2 are presented in the Figures 17 and 18.

Since the Fujitsu’s C++ compiler performance results were obtained with the Kfast option, in Figure
19(a) we present also the performance gain when enabling this option in the GCC compiler.

4.3 ExaSMR Single Rod Performance on A100 GPUs

We demonstrate a single GPU performance on ANL’s ThetaGPU system (which has NVIDIA A100 GPUs) for
NekRS full solver simulations for ExaSMR’s singlerod problem with the problem size of 2.4M grid points per
GPU. Our tests are extended to Aurora-development system for this problem. Table 4 shows the performance
in comparison to other GPU platforms. The simulations are for 500 steps and the averaged timing per step,

Exascale Computing Project (ECP) 15 CEED-MS37

103 104 105 106 107
0

0.2

0.4

0.6

0.8

1

Degrees of Freedom (DOF)

Th
ro
ug

hp
ut

(G
DO

F/
s)

MFEM BP3 @ A64FX, FCC 4.4.0a 20210127

p=1
p=2
p=3
p=4
p=5
p=6

(a) BP3 with Fujitsu fcc-4.4.0 compiler

103 104 105 106 107
0

0.2

0.4

0.6

0.8

1

Degrees of Freedom (DOF)

Th
ro
ug

hp
ut

(G
DO

F/
s)

MFEM BP3 @ A64FX, FCC 4.6.1 20210812

p=1
p=2
p=3
p=4
p=5
p=6

(b) BP3 with Fujitsu fcc-4.6.1 compiler

Figure 17: MFEM BP3 benchmark on one A64FX chip with Fujitsu fcc-4.4.0
(a) and fcc-4.6.1 (b) compilers.

103 104 105 106 107
0

0.2

0.4

0.6

0.8

1

Degrees of Freedom (DOF)

Th
ro
ug

hp
ut

(G
DO

F/
s)

MFEM BP3 @ A64FX, GCC‐10.2

p=1
p=2
p=3
p=4
p=5
p=6

(a) BP3 with GCC 10.2

103 104 105 106 107
0

0.2

0.4

0.6

0.8

1

Degrees of Freedom (DOF)

Th
ro
ug

hp
ut

(G
DO

F/
s)

MFEM BP3 @ A64FX, GCC‐11.2

p=1
p=2
p=3
p=4
p=5
p=6

(b) BP3 with GCC 11.2

Figure 18: MFEM BP3 benchmark on one A64FX chip with GCC 10.2 (a) and
11.2 (b) compilers.

tstep, is measured in seconds for 101-500 steps. R is the ratio of tstep to Summit V100. The timestep size is
∆t=1.2e-03 (CFL=7.3). Characteristic-based BDF2 with 1 substeps is used for timestepping. Tolerances for
pressure and velocity are 1e-4 and 1e-6, respectively.

4.4 MFEM BP1 Results and Tensor-Core MMA Kernels for A100 GPUs

The new MFEM fast and XFL kernels from Section 2 were ported on the NVIDIA A100 GPU achitecture
and we report the obtained speedups in Figures 20 and 21.

Additionally for the A100 chip, we collaborated with Peng Wang and Jiqun Tu from NVIDIA to re-

Exascale Computing Project (ECP) 16 CEED-MS37

103 104 105 106 107
0

0.2

0.4

0.6

0.8

1

Degrees of Freedom (DOF)

Th
ro
ug

hp
ut

(G
DO

F/
s)

MFEM BP3 @ A64FX, GCC‐11.2‐fast‐math

p=1
p=2
p=3
p=4
p=5
p=6

(a) BP3 with GCC 11.2 ffast-math and OpenMPI 4.1.1.

103 104 105 106 107
0

0.2

0.4

0.6

0.8

1

Degrees of Freedom (DOF)

Th
ro
ug

hp
ut

(G
DO

F/
s)

MFEM BP3 @ A64FX, GCC + Fujitsu MPI

p=1
p=2
p=3
p=4
p=5
p=6

(b) BP3 with GCC 11.2 ffast-math and Fujitsu’s MPI

Figure 19: MFEM BP3 benchmark on one A64FX chip with GCC 11.2
ffast-math and OpenMPI 4.1.1 (a) or Fujitsu’s MPI (b).

NekRS for singlerod simulation, E = 7168, N = 7, n = 2.4M , Re = 5000
system backend t500 t100 tstep R
Summit/V100 CUDA 4.089e+01 9.018e+00 0.0795 1.00
ThetaGPU/A100 CUDA 2.503e+01 5.587e+00 0.0485 0.61
Spock/MI100 HIP 5.007e+01 1.103e+01 0.0975 1.22
Tulip/MI100 HIP 4.870e+01 1.060e+01 0.0953 1.19

Table 4: NekRS performance on a single GPU.

interprete the partially assembled tensor contraction kernels as a new type of general matrix multiply + tensor
transpose operations kernels using the tensor core matrix multiply-add (MMA) parallel thread execution
(PTX) instructions. This new type of kernels uses for the first time all the hardware available on the NVIDIA
GPU chip by the use of the FP64 tensor cores.

The instruction can be inserted into CUDA C++ code via the inline PTX syntax. It is a warp-synchronous,
collective M-by-N-by-K matrix operation: the matrix data elements are automatically distributed between
the hardware threads. Only the mma.sync.aligned.m8n8k4.row.col.f64.f64.f64.f64 is available on the A100
hardware, but useful enough to recast the tensor products into a series of matrix multiply-add operations.
Figure 22 presents the MFEM MMA kernels for the BP1 benchmark on a single NVIDIA A100 GPU.

5. ADDITIONAL TOPICS

This section covers additional research performed by the CEED team on topics such as just-in-time (JIT)
compilation at scale and the use of mixed precision algorithms in high-order methods.

5.1 JIT in Applications at Scale

The easiest way of compiling code at run-time - also called just-in-time (JIT) - requires to execute system()

calls in order to launch compilation commands MFEM embeds the code to be compiled at run-time as standard
strings, as well as all the directory paths and ahead-of-time (AOT) compilation commands used for the library
itself. Recent version of MPI implementations usually claim that: In general, if your application

calls system() or popen(), it will likely be safe. However, there are still some implementations

Exascale Computing Project (ECP) 17 CEED-MS37

103 104 105 106 107
0

1

2

3

4

5

Degrees of Freedom (DOF)

Th
ro
ug

hp
ut

(G
DO

F/
s)

MFEM BP1 @ DGX A100

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6

(a) Deterministic kernels

103 104 105 106 107
0

1

2

3

4

5

Degrees of Freedom (DOF)

Th
ro
ug

hp
ut

(G
DO

F/
s)

MFEM BP1 FAST @ DGX A100

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6

(b) Fast non-deterministic kernels

Figure 20: MFEM BP1 benchmark on a single NVIDIA A100 GPU for the
deterministic (a) and fast non-deterministic (b) kernels.

103 104 105 106 107
0

1

2

3

4

5

Degrees of Freedom (DOF)

Th
ro
ug

hp
ut

(G
DO

F/
s)

MFEM BP1 XFL @ DGX A100

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6

Figure 21: Reduced N0.8 obtained with the XFL kernels on CEED BP1 bench-
mark on a single NVIDIA A100 GPU.

that have limitations, depending if they rely on specific software or network stacks.
There are three ways to be able to launch these commands:

• direct fork() and system() calls,

• through the MPI Comm Spawn() interface,

Exascale Computing Project (ECP) 18 CEED-MS37

103 104 105 106 107
0

1

2

3

4

5

Degrees of Freedom (DOF)

Th
ro
ug

hp
ut

(G
DO

F/
s)

MFEM BP1 MMA@ DGX‐A100

p = 4
p = 5
p = 6

Figure 22: MMA kernels BP1 benchmark on a single NVIDIA A100 GPU.

• by forking before MPI Init and keeping one thread for the direct fork() and system() calls.

Each way has been implemented and explored in a research branch of MFEM, to be able to deal with all
different MPI limitations that have been encountered on the different HPC systems tested on. Sequential and
parallel support have been tested on RedHat Linux, MacOS and HPC environments such as Sierra at LLNL.
Parallel runs have been tested and validated with up to 32768 CPU MPI ranks and 1024 GPU MPI ranks.

Here is the decision tree followed by the MFEM implementation to allow executing compilation commands
on the variety of HPC or desktop environments:

MPI implementation support

fork(),
system()?

MPI Comm Spawn?

1. Use system() directly

2. Use MPI Comm Spawn() 3. Use fork() before MPI Init()

yes no

yes no

3 Easy to use

7 Support not widely available

3 Official API support

7 Needs an external binary

7 Extra MPI communication layer

3 Independent of the MPI support

7 Fork overhead before MPI Init

7 Extra POSIX communication layer

Direct fork() and system() calls support. Using directly the fork() and system() calls from MPI ranks is
straightforward and has been the first implementation in order to have the JIT working, both for sequential

Exascale Computing Project (ECP) 19 CEED-MS37

and parallel runs. Most Linux and MacOS platforms offer these support, but also Sierra at LLNL.
However, MPI processes support for fork(), system(), or popen() system calls are not guaranteed. As stated

in the OpenMPI FAQ (https://www.open-mpi.org/faq/?category=tuning#fork-warning), it depends
on a lot of different factors, that includes: the operating system, the underlying compute hardware or the
network stack, interactions with other middle-ware in the MPI process. We have encountered issues with
some MPI implementations. One example: fork() is not available on Blue Gene, consequently system() is
not supported too on such systems. In some cases, the MPI will determine that it is not safe to fork(). The
MPI implementation can register a pthread atfork() callback to print a warning when the process forks. If
we called fork() or system() from the MPI program we got a warning, such as the following one:

An MPI process has executed an operation involving a call to the
"fork()" system call to create a child process. Open MPI is currently
operating in a condition that could result in memory corruption or
other system errors; your MPI job may hang, crash, or produce silent
data corruption. The use of fork() (or system() or other calls that
create child processes) is strongly discouraged.

If you are absolutely sure that your application will successfully and
correctly survive a call to fork(), you may disable this warning by
setting the mpi_warn_on_fork MCA parameter to 0.

This is a serious warning which is due to the partial/lack of support for the fork() system call within the
software stack used to deal with the underlying network layers. That’s why the standard purposely refrains
from incorporating OS-specific things like extended process control. The only officially supported way to
execute other programs from within an MPI application is the use of MPI Comm spawn.

MPI Comm Spawn() MPI application interface. Another official way to launch other binaries is by the
use of the MPI Comm Spawn() MPI application program interface. MPI Comm Spawn() spawns a number of
identical binaries and in the MFEM JIT case, one single executable, capable of launching the different
compilation commands. MPI Comm Spawn() starts identical copies of the MPI program specified by one
command, establishing communication with them and returning another communicator. The spawned
processes are referred to as children. The children have their own MPI COMM WORLD, which is separate
from that of the parents. The communicator returned by MPI Comm Spawn() contains the parent processes in
the local group and the child processes in the remote group: it allows to communicate between the two groups.
However, the support for MPI Comm Spawn() is not fully supported on the different MPI implementations, which
motivated the need for another support, independent of the underlying MPI implementation, to allow the
direct fork() and system() calls.

Forking before MPI Init, one thread for the fork() and system(). Forking before the MPI Init call offers
the advantage of being independent of the underlying MPI implementation. One disadvantage it brings is the
duplication of each process launched through the mpirun command. All of the forked processes except one are
returning, giving back the resources as only one process is kept alive to handle the compilation commands.
One other advantage this method offers compared to the MPI Comm Spawn() in an HPC environment is the
fact that no additional ranks are needed when requesting the number of nodes to the batch job scheduler,
whereas the MPI Comm Spawn() approach do need extra allocation requirements or some MPI run options (such
as oversubscribe).

MFEM JIT compilation process.

MFEM cpp source with
MFEM JIT tagged kernels

Embeded kernel
in cpp source

JIT Preprocessor

Piped compilation
with MFEM flags

MFEM object with
embedded kernels

MPI Compilation
system() call support

Run-time kernel map

Dynamic library
installed cache

Exascale Computing Project (ECP) 20 CEED-MS37

https://www.open-mpi.org/faq/?category=tuning#fork-warning

5.2 Potential of Mixed Precision in CEED Algorithms

The use of 64-bit floating point operations (FP64) has been a well established de facto standard in scientific
computing. However, the performance of 32-bit (FP32) operations is often at least twice faster than FP64
operations on modern architectures. The reasons for this is that the FP32 arithmetic on modern processors is
usually twice as fast as the FP64 arithmetic, and the number of bytes moved through the memory system is
halved. The revolution in machine learning and artificial intelligence (AI) has influenced hardware design and
brought interest in fast 16-bit floating-point arithmetic (FP16), since many AI applications do not require
the FP32 or FP64 accuracy. Parameters for the IEEE FP16, FP32, and FP64 arithmetic precisions, and
their respective peak performances on NVIDIA V100 and AMD MI100 GPUs are given in Table 5. The large
accelerations that can be achieved by lowering the precision in parts of the computation has motivated us to
explore the potential of using combinations of these precisions, referred to as mixed precision, to accelerate
CEED Algorithms while still retaining desired accuracy.

Table 5: Parameters for the IEEE FP16, FP32, and FP64 arithmetic precisions,
and their respective peak performances on NVIDIA V100 and AMD MI100 GPUs.
“Range” denotes the order of magnitude of the smallest subnormal (xmin,s), and
largest and smallest positive normalized floating-point numbers. The peak 16-bit
performances reported∗ by vendors vary depending on the instructions and special
hardware acceleration used, e.g., the peak performance of 125 Tflop/s for Nvidia
V100 uses FP16-TC (tensor cores) with inputs FP16, while the outputs and the
computations are performed in full (FP32) precision.

Arithmetic Size Range Unit round-off Peak Tflop/s

(bits) xmin,s xmin xmax V100 MI100

BFloat16 16 9.2× 10−41 1.2× 10−38 3.4× 1038 3.9× 10−3 N/A 92∗

FP16 16 6.0× 10−8 6.1× 10−5 6.6× 104 4.9× 10−4 125∗ 184∗

FP32 32 1.4× 10−45 1.2× 10−38 3.4× 1038 6.0× 10−8 15.7 23
FP64 64 4.9× 10−324 2.2× 10−308 1.8× 10308 1.1× 10−16 7.8 11.5

Mixed Precision Preconditioning in libParanumal

The CEED GPU implementations of high-order hexahedral finite element operations by and large operate in
the memory bound limit due to the low arithmetic intensity of the streaming operations like gather/scatter,
conjugate gradient updates, reductions, as well as element local matrix-free matrix-vector products expressed
in terms of tensor contractions. The CEED team has repeatedly verified that the computational time taken
to complete one of these operations on the GPU is well modeled by

T op = T0 +
Bop ×Ndof

W op
max

, (6)

where T0 is a (nearly) universal overhead associated with launching the kernel on the GPU, Ndof is the
number of degrees of freedom processed in the operation, Bop is the number of bytes of data transacted with
global DEVICE memory, and W op

max is the asymptotic global DEVICE memory throughput rate achieved
for large Ndof. This model reflects the observation that a GPU typically streams data efficiently and kernel
computation time scales linearly with problem size at a fixed rate once accessing data out of cache.

There are only a limited set of options for optimizing a memory bound solver: reduce the number of outer
iterations and/or reduce the amount of data moved by the preconditioner. There are other pressing issues
related optimizing message passing phases for multi-GPU computations however these are not addressed
in this section. One obvious way to reduce the amount of on-GPU data movement when applying the
preconditioner is to use reduced precision, i.e. reduce the number of bytes required per degree of freedom Bop.
In the earliest days of GPGPU computing Strzodka and Göddeke experimented with using single precision
preconditioners to both reduce the amount of data movement and to reduce the overall number of double

Exascale Computing Project (ECP) 21 CEED-MS37

precision operations as the contemporary GPUs did not support native double precision in hardware [9].
Furthermore they observed at the time that multigrid solvers [19] and also multigrid preconditioners could be
robust to using selective use of reduced precision. For modern server grade GPUs such as the NVIDIA V100
or A100 and the AMD MI100 there is substantial support for double precision floating operations so the
precision used for compute is less important than the precision at which data is stored.

0 2 4 6 8

·106

1

1.2

1.4

1.6

1.8

2

Ndof

S
p

ee
d

u
p

(T
6
4
/T

3
2
)

Axpy with three fields
Elliptic operator

Figure 23: Comparison of theoretical speed ups for vector streaming operations
and elliptic matrix-free matrix-vector multiplication for a range of Ndof on a
theoretical GPU proxy for the NVIDIA V100. The model assumes a launch time
T0 = 4µs and asymptotic throughput of Wmax ≈ 800GB/s for all kernels.

We can use the compute time model from Equation 6 to theoretically model the speed up one might
expect when switching an operation from using say double precision to single precision by the following. For
instance when evaluating of the spectral element stiffness matrix-vector product (as defined in the CEED
BK5 benchmark kernel) the speed can be modeled approximately with

SAx =
TAx−64

TAx−32
=
T0 + 8×8×Ndof

WAx−64
max

T0 + 8×4×Ndof

WAx−32
max

(7)

reflecting that this operation loads an input value and six geometric factors per local degree of freedom, and
outputs one result value per local node. In most cases we have been able to optimize the matrix-free vector
kernels to within 80-90% of peak throughput for a given GPU depending on the manufacturer and model.
We benchmarked the kernels for instance on the NVIDIA V100 and measured asymptotic throughput up
to WAx−32

max ≈ WAx−64
max ≈ 800GB/s with launch times of approximately 4µs depending on the specifics of

how deep the on DEVICE queue is stacked. In Figure 23 we visualize the theoretical speed up as a function
of Ndof for the spectral matrix-vector product when reducing from double to single precision. For small
Ndof there is no speed up as launch cost dominates the computation time as one might expect. However
asymptotically the speed up does indeed approach a factor of 2 which we expect when halving the amount of
data moved. In fact we can estimate that to get to within 80% of doubling the throughput by switching from
double to single precision we need Ndof ≥ 150, 000.

The speed up for simple streaming operations is a little less rosy. For instance performing an axpy

operation requires Ndof ≥ 400, 000 to achieve 80% of the maximum throughput doubling when switching from
double to single precision. Performing a reduction operation requires Ndof ≥ 1.2M to achieve 80% of the
maximum throughput improvement.

We consider a concrete problem to put the above estimates into perspective. Consider a mesh of 6000
degree 7 hexahedra. The finest grid at the top level of a heterogeneous multigrid cycle has Ndof ≈ 2M .
However at the degree 4 level is only has Ndof ≈ 384, 000 and at the coarsest degree one p-multigrid level
this mesh has a mere Ndof ≈ 6000. Thus only the highest levels will show major benefits from reducing the

Exascale Computing Project (ECP) 22 CEED-MS37

precision although it certainly will not harm throughput performance and will reduce storage requirements at
the lower p-multigrid levels.

The libParanumal library developed at Virginia Tech has supported global precision change from inception
in late 2016. In 2018 the library was updated to support limited multi-precision capabilities within the
preconditioner but this was subsequently refactored out. In 2020 more extensive support for multi-precision
was restored within a development fork of libParanumal. This update allows the library to use double precision
(FP64) for the majority of set up on the HOST and in the outer Krylov iterations on DEVICE while using
single precision arithmetic for the majority of the multigrid cycle (FP32). This is accompanied with other
multi-precision capabilities in sparse matrix representation on DEVICE.

Toward Mixed Precision in Gingko + MFEM

Recent improvements to the integration of the Ginkgo linear algebra library [2, 1] in MFEM increase the
options for using Ginkgo’s mixed-precision capabilities in MFEM. Specifically, MFEM and Ginkgo solvers and
preconditioners can now be used interchangeably, and Ginkgo can use MFEM’s matrix-free operators in its
solvers. The Ginkgo project has a mixed-precision algebraic multigrid preconditioner in active development
that offers mixed-precision multigrid to MFEM when a sparse matrix is available for preconditioning, as is the
case when using the low-order refined (LOR) operator to build a sparse matrix for preconditioning purposes,
demonstrated previously in CEED-MS36 [13]. The Ginkgo mixed-precision AMG allows the user to have
double precision on the finest level – interacting with MFEM double-precision vectors and the LOR matrix –
while computing and storing data in single precision on other levels in the multigrid hierarchy. Similar to
the p-multigrid example given above, there is a limit to the benefit of executing the coarser levels in lower
precision, as the finest levels dominate the time, yet there is no compelling reason to convert back to double
precision at the bottom of the V-cycle, and we do benefit from reduced storage requirements.

In Table 6 we consider a diffusion problem on two simple meshes provided by MFEM: “star” (a two-
dimensional mesh) and “beam-hex” (a three-dimensional mesh). The LOR matrix is used to create a
basic Ginkgo AMG preconditioner. The preconditioner has aggregation-based coarsening with one pre- and
post-sweep of Jacobi smoothing on each level, and does four iterations of Jacobi smoothing on the coarse
mesh in lieu of a coarse grid solve. The iteration counts for the full-double-precision case are compared
to those of the mixed-precision preconditioner across a range of high-order discretization basis function
orders; we also consider multiple values of mesh refinement, increasing the total degrees of freedom in the
problem. We confirm that there is very little change in the effectiveness of the preconditioner when using the
mixed-precision version compared to double precision, with iteration counts nearly identical, and reiterate that
no changes were required to MFEM’s operators or solvers in order to use the mixed-precision preconditioner.
Performance improvements and additional options for Ginkgo’s AMG preconditioning are planned.

Plans for Mixed Precision Support in libCEED

As an initial step toward mixed-precision performance enhancements of libCEED, we have added the ability
to compile the libCEED library to use single precision everywhere. Furthermore, we have conducted several
tests of CUDA performance in single precision. This offers a ceiling on performance for mixed single and
double usage and validates the previously-discussed model illustrated in Figure 23, as we will demonstrate in
the following.

In order to be able to run benchmarks for both single and double precision, a new implementation of the
CEED diffusion benchmark (BP3) was created. This implementation does not rely on MFEM, as we have
generally used to report performance for the GPU backends previously, due to the lack of support for single
precision in MFEM. Instead, the entire problem setup is done with libCEED and low-level C code modified
from libCEED tests. The linear form integration producing the right-hand side vector for the linear system is
done through the creation and application of a libCEED mass operator. To achieve as much consistency
as possible with the MFEM benchmark results, the handling of essential boundary conditions with the
matrix-free operator is taken from MFEM’s implementation, with a simple kernel for setting constrained
degrees of freedom; default grid and thread block settings match those of MFEM. The conjugate gradient
(CG) solver used is from the Ginkgo linear algebra library [2, 1], in which all solvers take the floating point
precision as a template parameter, making it simple to switch between float and double.

Exascale Computing Project (ECP) 23 CEED-MS37

mesh order DOF double mixed

star

2
5281 32 32
20801 49 45
82561 70 69

3
11761 43 41
46561 63 60
185281 97 96

4
20801 51 51
82561 78 74
328961 129 128

5
32401 60 61
128801 91 94
513601 147 147

6
46561 72 71
185281 107 107
739201 196 199

mesh order DOF double mixed

beam-
hex

2
37281 47 48
279873 79 82

3
120625 74 78
924385 139 138

4
279873 115 112
2167425 212 215

5
539601 155 157
4205601 310 309

Table 6: Comparison of number of iterations for full double precision AMG
preconditioner versus mixed precision with the Ginkgo library. The preconditioner
is generated for the low order refined matrix corresponding to the high-order
matrix-free operator.

First, to illustrate the relative cost of the libCEED operator application compared to other portions of the
time spent in the iterative solver, we split the GPU activities into four categories: operator apply, performed
by libCEED; setting the essential boundary conditions; performing vector updates and reduction operations
required by CG at each iteration; and all other activities. For two sizes of meshes, the breakdown of these
four activities is shown for the cuda-gen backend in Figure 24. The dominant costs are clearly the libCEED
operator application and the vector operations, with the operator accounting for the majority of the time as
the mesh size is increased. (The cuda-gen backend uses a fused operator kernel; in the case of a non-fused
backend, such as magma-det, the domination of the operator application is even greater, as seen in Figure 25.)

Figure 26 details the speedup obtained from single precision compared to double for the cuda-gen backend,
the best-performing CUDA backend for tensor-product elements. In the right plot, we show the speedup of
the average time per iteration of the CG solver. The left plot comes from data extracted from the nvprof

profiler tool and shows the speedup of the libCEED operator application kernel itself. The same information
is provided for the magma-det backend in Figure 27.

In terms of the time per iteration metric, very little overall speedup is achieved for smaller problems, while
the overall speedup trend is clearly a blend of the behavior of the vector operations and operator applications,
with the dampening of the operator speedup especially apparent for the cuda-gen backend. There is a clear
trend that we must have more than 100,000 degrees of freedom per GPU to achieve noticeable speedup, and
more than a million DOF per GPU to reach the maximum speedup. These results line up nicely with the
model given in Eq. 7 and the related discussion based on the V100 GPU. In particular, we confirm that
the operator application achieves its peak speedup more quickly than the entire CG iteration. The results
also demonstrate the utility of the model for predicting the range of required problem sizes to reach 80% of
maximum speedup, given that each CG iteration involves operator application, vector updates, and vector
reduction.

Mixed-precision libCEED operators. The addition of mixed-precision computations within libCEED
itself is an area of active development. There are many possible combinations of data and computation
precision within a libCEED operator. Consider the schematic in Figure 28, which represents the different
kernels/functions inside a libCEED operator (element restriction, E , basis action, B, and QFunction, D) as
well as the data flow of input and output vectors. The dashed line on the left indicates that the L-Vectors
are the inputs and outputs that interact with user code, while the E- and Q-Vectors are internal to libCEED.

Since we are generally memory bound with tensor-product elements, we benefit from being able to reduce
movement to and from main memory as much as possible. In terms specific to the libCEED workflow of

Exascale Computing Project (ECP) 24 CEED-MS37

Figure 24: Breakdown of average GPU time per iteration of CG for the diffusion
problem with the cuda-gen backend, on a mesh of: (top) 16 × 16 × 16 and
(bottom) 32 × 32 × 32 hexahedral elements. Results obtained on an NVIDIA
V100 GPU with CUDA 11.0.

Figure 25: Breakdown of average GPU time per iteration of CG for the diffusion
problem with the magma-det backend, on a mesh of 32 × 32 × 32 hexahedral
elements. Results obtained on an NVIDIA V100 GPU with CUDA 11.0.

Figure 28, this could take the form of using lower precision to represent the internal E- and Q-Vectors, while
converting locally to higher precision inside the basis and QFunction kernels and performing computation
in the higher precision. The benefit of this approach will depend on the backend in question. For example,
in the non-fused GPU backends, the entire E- and Q-Vectors get written to memory at the end of their
respective kernels, while in the fused backends (cuda-gen and hip-gen), everything is designed to be kept in
registers or shared memory. This indicates that the non-fused backends would see greater relative speedup
from this approach. The CPU backends, on the other hand, aim to keep the E- and Q-Vector data in cache,

Exascale Computing Project (ECP) 25 CEED-MS37

102 103 104 105 106 107

DOF

1.0

1.5

2.0

2.5

sp
ee

d
u

p
in

op
er

at
or

ap
p

ly

order 2

order 4

order 8

102 103 104 105 106 107

DOF

1.00

1.25

1.50

1.75

2.00

sp
ee

d
u

p
in

av
g

ti
m

e
p

er
it

er
at

io
n

order 2

order 4

order 8

Figure 26: Speedup of the cuda-gen backend for the diffusion benchmark
problem (BP3) when using single precision instead of double, for three orders
of basis functions. The speedups are for: left, the time spent in applying the
matrix-free operator with libCEED; right, the average time per iteration of CG.
Results obtained on an NVIDIA V100 GPU with CUDA 11.0.

102 103 104 105 106 107

DOF

1.0

1.5

2.0

2.5

sp
ee

d
u

p
in

op
er

at
or

ap
p

ly

order 2

order 4

order 8

102 103 104 105 106 107

DOF

1.00

1.25

1.50

1.75

2.00
sp

ee
d

u
p

in
av

g
ti

m
e

p
er

it
er

at
io

n
order 2

order 4

order 8

Figure 27: Speedup of the magma-det backend for the diffusion benchmark
problem (BP3) when using single precision instead of double, for three orders
of basis functions. The speedups are for: left, the time spent in applying the
matrix-free operator with libCEED; right, the average time per iteration of CG.
Results obtained on an NVIDIA V100 GPU with CUDA 11.0.

making them more analogous to the fused GPU backends in this regard, despite having separate kernels for
each operation like the non-fused GPU backends.

Another possibility is that we would want to perform some of the computational kernels in a lower
precision, especially in the case of non-tensor basis functions or a particularly expensive QFunction. Figures
29 and 30 demonstrate the percentage of GPU time spent in each component of the diffusion operator
application for the non-fused magma-det backend and the speedup achieved by performing these components in
single precision, respectively. The QFunction becomes the most expensive portion of the operator application
for the large problem sizes of most interest to the GPU backends, though the basis computations increase in
relative cost for higher orders of basis functions. The relative cost of each portion of the operator will depend,
of course, on the operator itself, especially as libCEED allows users to define their own QFunctions. The
relative cost will also depend on the hardware in question, such that CPU and GPU backends are not expected
to benefit uniformly from performing a particular component of the operator in lower precision. We also
emphasize that these results are for a tensor-product basis, and the relationship of basis action to QFunction
in terms of cost is also dependent on the type of basis. All of this indicates that libCEED’s interface for
allowing mixed-precision computation needs to be flexible and adaptable – in the spirit of libCEED itself.

Exascale Computing Project (ECP) 26 CEED-MS37

L-vectors E-vectors Q-vectors

active inputs:

passive inputs: pL
i<latexit sha1_base64="c1QW/yNMDXwPPYVYVc6hxKKMAb4=">AAAB7HicbVA9SwNBEJ3zM8avqKXNYhCswl0UtAzaWFhE8JJAcoa9zV6yZG/v2J0TQshvsLFQxNYfZOe/cZNcoYkPBh7vzTAzL0ylMOi6387K6tr6xmZhq7i9s7u3Xzo4bJgk04z7LJGJboXUcCkU91Gg5K1UcxqHkjfD4c3Ubz5xbUSiHnCU8iCmfSUiwShayU+74vGuWyq7FXcGsky8nJQhR71b+ur0EpbFXCGT1Ji256YYjKlGwSSfFDuZ4SllQ9rnbUsVjbkJxrNjJ+TUKj0SJdqWQjJTf0+MaWzMKA5tZ0xxYBa9qfif184wugrGQqUZcsXmi6JMEkzI9HPSE5ozlCNLKNPC3krYgGrK0OZTtCF4iy8vk0a14p1XqvcX5dp1HkcBjuEEzsCDS6jBLdTBBwYCnuEV3hzlvDjvzse8dcXJZ47gD5zPH6QFjpI=</latexit>

Bai
<latexit sha1_base64="PBkn9uiHx5doOr0VwlUX9CKi2gQ=">AAAB7nicjVDLSgNBEOyNrxhfUY9eBoPgKezGgB5DvHiMYB6QLMvspDcZMju7zMwKYclHePGgiFe/x5t/4+RxUFGwoKGo6qa7K0wF18Z1P5zC2vrG5lZxu7Szu7d/UD486ugkUwzbLBGJ6oVUo+AS24Ybgb1UIY1Dgd1wcj33u/eoNE/knZmm6Md0JHnEGTVW6jaDnAZ8FpQrXtVdgPxNKrBCKyi/D4YJy2KUhgmqdd9zU+PnVBnOBM5Kg0xjStmEjrBvqaQxaj9fnDsjZ1YZkihRtqQhC/XrRE5jradxaDtjasb6pzcXf/P6mYmu/JzLNDMo2XJRlAliEjL/nQy5QmbE1BLKFLe3EjamijJjEyr9L4ROrepdVGu39UqjuYqjCCdwCufgwSU04AZa0AYGE3iAJ3h2UufReXFel60FZzVzDN/gvH0CSXKPiQ==</latexit>

Bpi
<latexit sha1_base64="MPkie/IgIEDkoowaTMWu/z3QBgw=">AAAB7nicjVDLSgNBEOz1GeMr6tHLYBA8hWwU9BjixWME84BkWWYns8mQ2dlhplcISz7CiwdFvPo93vwbJ4+DioIFDUVVN91dkZbCYrX64a2srq1vbBa2its7u3v7pYPDtk0zw3iLpTI13YhaLoXiLRQoeVcbTpNI8k40vp75nXturEjVHU40DxI6VCIWjKKTOo0w16GYhqWyX6nOQf4mZViiGZbe+4OUZQlXyCS1tudXNQY5NSiY5NNiP7NcUzamQ95zVNGE2yCfnzslp04ZkDg1rhSSufp1IqeJtZMkcp0JxZH96c3E37xehvFVkAulM+SKLRbFmSSYktnvZCAMZygnjlBmhLuVsBE1lKFLqPi/ENq1in9eqd1elOuNZRwFOIYTOAMfLqEON9CEFjAYwwM8wbOnvUfvxXtdtK54y5kj+Abv7RNgW4+Y</latexit>

basis data D
<latexit sha1_base64="nWwwYAQoZA6fqLMsPSjj2aYgRKs=">AAAB6HicjVDLSgNBEOyNrxhfUY9eBoPgKezGgB6DevCYgHlAsoTZSW8yZnZ2mZkVwpIv8OJBEa9+kjf/xsnjoKJgQUNR1U13V5AIro3rfji5ldW19Y38ZmFre2d3r7h/0NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Grmt+9RaR7LWzNJ0I/oUPKQM2qs1LjuF0te2Z2D/E1KsES9X3zvDWKWRigNE1Trrucmxs+oMpwJnBZ6qcaEsjEdYtdSSSPUfjY/dEpOrDIgYaxsSUPm6teJjEZaT6LAdkbUjPRPbyb+5nVTE174GZdJalCyxaIwFcTEZPY1GXCFzIiJJZQpbm8lbEQVZcZmU/hfCK1K2TsrVxrVUu1yGUcejuAYTsGDc6jBDdShCQwQHuAJnp0759F5cV4XrTlnOXMI3+C8fQKdHIzP</latexit>

aE
i<latexit sha1_base64="PCID2oC6T5D0SyooCS9A4Pjjd/4=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9FgUwWMF0xbaWDbbTbt0swm7E6GU/gYvHhTx6g/y5r9x2+agrQ8GHu/NMDMvTKUw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmCTTjPsskYluhdRwKRT3UaDkrVRzGoeSN8PhzdRvPnFtRKIecJTyIKZ9JSLBKFrJp13xeNstld2KOwNZJl5OypCj3i19dXoJy2KukElqTNtzUwzGVKNgkk+KnczwlLIh7fO2pYrG3ATj2bETcmqVHokSbUshmam/J8Y0NmYUh7Yzpjgwi95U/M9rZxhdBWOh0gy5YvNFUSYJJmT6OekJzRnKkSWUaWFvJWxANWVo8ynaELzFl5dJo1rxzivV+4ty7TqPowDHcAJn4MEl1OAO6uADAwHP8ApvjnJenHfnY9664uQzR/AHzucPgnGOfA==</latexit>

aQ
i

<latexit sha1_base64="6YpSrz9LGfvbNLLeUrWkIVJNUsI=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48tmFpoY9lsN+3SzSbsToRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMkmmGfdZIhPdDqnhUijuo0DJ26nmNA4lfwhHtzP/4YlrIxJ1j+OUBzEdKBEJRtFKPu2Jx2avXHGr7hxklXg5qUCORq/81e0nLIu5QiapMR3PTTGYUI2CST4tdTPDU8pGdMA7lioacxNM5sdOyZlV+iRKtC2FZK7+npjQ2JhxHNrOmOLQLHsz8T+vk2F0HUyESjPkii0WRZkkmJDZ56QvNGcox5ZQpoW9lbAh1ZShzadkQ/CWX14lrVrVu6jWmpeV+k0eRxFO4BTOwYMrqMMdNMAHBgKe4RXeHOW8OO/Ox6K14OQzx/AHzucPlKGOiA==</latexit>

aQ
o<latexit sha1_base64="afBIIeBPKF2ZtFRuyAiaYa/lV7w=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRmLiiewiiR6JXjxC4gIJrKRbutDQbTdt14Rs+A1ePGiMV3+QN/+NBfag4EsmeXlvJjPzwoQzbVz32ylsbG5t7xR3S3v7B4dH5eOTtpapItQnkkvVDbGmnAnqG2Y47SaK4jjktBNO7uZ+54kqzaR4MNOEBjEeCRYxgo2VfDyQj61BueJW3QXQOvFyUoEczUH5qz+UJI2pMIRjrXuem5ggw8owwums1E81TTCZ4BHtWSpwTHWQLY6doQurDFEklS1h0EL9PZHhWOtpHNrOGJuxXvXm4n9eLzXRTZAxkaSGCrJcFKUcGYnmn6MhU5QYPrUEE8XsrYiMscLE2HxKNgRv9eV10q5VvatqrVWvNG7zOIpwBudwCR5cQwPuoQk+EGDwDK/w5gjnxXl3PpatBSefOYU/cD5/AJ3Fjo4=</latexit>

aE
o<latexit sha1_base64="G4f6ouRvkRTVK+KDstSnGpv3+Xo=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CRbBU9mtBT0WRfBYwW0L7VqyabYNzSZLkhXK0t/gxYMiXv1B3vw3pu0etPXBwOO9GWbmhQln2rjut1NYW9/Y3Cpul3Z29/YPyodHLS1TRahPJJeqE2JNORPUN8xw2kkUxXHIaTsc38z89hNVmknxYCYJDWI8FCxiBBsr+bgvH2/75YpbdedAq8TLSQVyNPvlr95AkjSmwhCOte56bmKCDCvDCKfTUi/VNMFkjIe0a6nAMdVBNj92is6sMkCRVLaEQXP190SGY60ncWg7Y2xGetmbif953dREV0HGRJIaKshiUZRyZCSafY4GTFFi+MQSTBSztyIywgoTY/Mp2RC85ZdXSatW9S6qtft6pXGdx1GEEziFc/DgEhpwB03wgQCDZ3iFN0c4L86787FoLTj5zDH8gfP5A4uVjoI=</latexit>

active outputs:

pE
i<latexit sha1_base64="mYG5hwISjpAcqoj752SCn/+htwY=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9FgUwWMF0xbaWDbbTbt0swm7E6GU/gYvHhTx6g/y5r9x2+agrQ8GHu/NMDMvTKUw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmCTTjPsskYluhdRwKRT3UaDkrVRzGoeSN8PhzdRvPnFtRKIecJTyIKZ9JSLBKFrJT7vi8bZbKrsVdwayTLyclCFHvVv66vQSlsVcIZPUmLbnphiMqUbBJJ8UO5nhKWVD2udtSxWNuQnGs2Mn5NQqPRIl2pZCMlN/T4xpbMwoDm1nTHFgFr2p+J/XzjC6CsZCpRlyxeaLokwSTMj0c9ITmjOUI0so08LeStiAasrQ5lO0IXiLLy+TRrXinVeq9xfl2nUeRwGO4QTOwINLqMEd1MEHBgKe4RXeHOW8OO/Ox7x1xclnjuAPnM8fmWmOiw==</latexit>

pQ
i

<latexit sha1_base64="XxehV+XcvfnPJctIv2DXB34BdfM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48tmFpoY9lsJ+3SzSbsboRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCopZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBD+HoduY/PKHSPJH3ZpxiENOB5BFn1FjJT3v8sdkrV9yqOwdZJV5OKpCj0St/dfsJy2KUhgmqdcdzUxNMqDKcCZyWupnGlLIRHWDHUklj1MFkfuyUnFmlT6JE2ZKGzNXfExMaaz2OQ9sZUzPUy95M/M/rZCa6DiZcpplByRaLokwQk5DZ56TPFTIjxpZQpri9lbAhVZQZm0/JhuAtv7xKWrWqd1GtNS8r9Zs8jiKcwCmcgwdXUIc7aIAPDDg8wyu8OdJ5cd6dj0VrwclnjuEPnM8fq5mOlw==</latexit>

BT
ao

<latexit sha1_base64="70pLubtMzw9je/DZ7gG9NZp38GQ=">AAAB8HicjVDJSgNBEK2JW4xb1KOXxiB4CpMo6DHEi8cI2SQZh55OT9Kkl6G7RwhDvsKLB0W8+jne/Bs7y0FFwQcFj/eqqKoXJZwZ6/sfXm5ldW19I79Z2Nre2d0r7h+0jUo1oS2iuNLdCBvKmaQtyyyn3URTLCJOO9H4auZ37qk2TMmmnSQ0EHgoWcwItk66rYcZDtX0rhkWS5WyPwf6m5RgiUZYfO8PFEkFlZZwbEyv4ic2yLC2jHA6LfRTQxNMxnhIe45KLKgJsvnBU3TilAGKlXYlLZqrXycyLIyZiMh1CmxH5qc3E3/zeqmNL4OMySS1VJLFojjlyCo0+x4NmKbE8okjmGjmbkVkhDUm1mVU+F8I7Wq5clau3pyXavVlHHk4gmM4hQpcQA2uoQEtICDgAZ7g2dPeo/fivS5ac95y5hC+wXv7BLA3kFU=</latexit>

aL
i<latexit sha1_base64="xHI5lcSHyiqor8fcE0v5t5lUof8=">AAAB7HicbVA9SwNBEJ3zM8avqKXNYhCswl0UtAzaWFhE8JJAcoa9zV6yZG/v2J0TQshvsLFQxNYfZOe/cZNcoYkPBh7vzTAzL0ylMOi6387K6tr6xmZhq7i9s7u3Xzo4bJgk04z7LJGJboXUcCkU91Gg5K1UcxqHkjfD4c3Ubz5xbUSiHnCU8iCmfSUiwShayadd8XjXLZXdijsDWSZeTsqQo94tfXV6CctirpBJakzbc1MMxlSjYJJPip3M8JSyIe3ztqWKxtwE49mxE3JqlR6JEm1LIZmpvyfGNDZmFIe2M6Y4MIveVPzPa2cYXQVjodIMuWLzRVEmCSZk+jnpCc0ZypEllGlhbyVsQDVlaPMp2hC8xZeXSaNa8c4r1fuLcu06j6MAx3ACZ+DBJdTgFurgAwMBz/AKb45yXpx352PeuuLkM0fwB87nD40NjoM=</latexit>

aL
o<latexit sha1_base64="AOetSti5jmd3Bu+F4oENHg7X4h0=">AAAB7HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5iQMugjYVFBC8JJGfY2+wlS/Z2j909IRz5DTYWitj6g+z8N26SKzTxwcDjvRlm5oUJZ9q47rdTWFvf2Nwqbpd2dvf2D8qHRy0tU0WoTySXqhNiTTkT1DfMcNpJFMVxyGk7HN/M/PYTVZpJ8WAmCQ1iPBQsYgQbK/m4Lx/v+uWKW3XnQKvEy0kFcjT75a/eQJI0psIQjrXuem5iggwrwwin01Iv1TTBZIyHtGupwDHVQTY/dorOrDJAkVS2hEFz9fdEhmOtJ3FoO2NsRnrZm4n/ed3URFdBxkSSGirIYlGUcmQkmn2OBkxRYvjEEkwUs7ciMsIKE2PzKdkQvOWXV0mrVvUuqrX7eqVxncdRhBM4hXPw4BIacAtN8IEAg2d4hTdHOC/Ou/OxaC04+cwx/IHz+QOWMY6J</latexit>

Eai
<latexit sha1_base64="RY2jKhn5KRZ04APBuEB0T0qFCnA=">AAAB+nicjVDLSsNAFL2pr1pfqS7dDBbBVUmqoMuiCC4r2Ae0IUymk3boZBJmJkqJ+RQ3LhRx65e482+ctF2oKHjgwuGce7mHEyScKe04H1ZpaXllda28XtnY3Nresau7HRWnktA2iXksewFWlDNB25ppTnuJpDgKOO0Gk4vC795SqVgsbvQ0oV6ER4KFjGBtJN+uDiKsxwTz7DL3M+yz3Ldrbt2ZAf1NarBAy7ffB8OYpBEVmnCsVN91Eu1lWGpGOM0rg1TRBJMJHtG+oQJHVHnZLHqODo0yRGEszQiNZurXiwxHSk2jwGwWQdVPrxB/8/qpDs+8jIkk1VSQ+aMw5UjHqOgBDZmkRPOpIZhIZrIiMsYSE23aqvyvhE6j7h7XG9cnteb5oo4y7MMBHIELp9CEK2hBGwjcwQM8wbN1bz1aL9brfLVkLW724Bust0+9BJRP</latexit>

ET
ao

<latexit sha1_base64="qLtUgpjX+Uy0rXMKmBJSIMZxRPY=">AAAB/HicjVDLSsNAFL3xWesr2qWbwSK4KkkVdFkUwWWFvqCNYTKdtEMnmTAzEUKov+LGhSJu/RB3/o2TtgsVBQ9cOJxzL/dwgoQzpR3nw1paXlldWy9tlDe3tnd27b39jhKpJLRNBBeyF2BFOYtpWzPNaS+RFEcBp91gcln43TsqFRNxS2cJ9SI8ilnICNZG8u3KIMJ6TDDPr6Z+jn0xvW35dtWtOTOgv0kVFmj69vtgKEga0VgTjpXqu06ivRxLzQin0/IgVTTBZIJHtG9ojCOqvHwWfoqOjDJEoZBmYo1m6teLHEdKZVFgNouo6qdXiL95/VSH517O4iTVNCbzR2HKkRaoaAINmaRE88wQTCQzWREZY4mJNn2V/1dCp15zT2r1m9Nq42JRRwkO4BCOwYUzaMA1NKENBDJ4gCd4tu6tR+vFep2vLlmLmwp8g/X2CSyglRs=</latexit>

Epi
<latexit sha1_base64="wekjdVnzEbF7jmtzqPrtCbwGC/0=">AAAB+nicjVDLSsNAFL2pr1pfqS7dDBbBVUmqoMuiCC4r2Ae0IUymk3boZBJmJkqJ+RQ3LhRx65e482+ctF2oKHjgwuGce7mHEyScKe04H1ZpaXllda28XtnY3Nresau7HRWnktA2iXksewFWlDNB25ppTnuJpDgKOO0Gk4vC795SqVgsbvQ0oV6ER4KFjGBtJN+uDiKsxwTz7DL3s8RnuW/X3LozA/qb1GCBlm+/D4YxSSMqNOFYqb7rJNrLsNSMcJpXBqmiCSYTPKJ9QwWOqPKyWfQcHRpliMJYmhEazdSvFxmOlJpGgdksgqqfXiH+5vVTHZ55GRNJqqkg80dhypGOUdEDGjJJieZTQzCRzGRFZIwlJtq0VflfCZ1G3T2uN65Pas3zRR1l2IcDOAIXTqEJV9CCNhC4gwd4gmfr3nq0XqzX+WrJWtzswTdYb5/T7ZRe</latexit>

Figure 28: Representation of libCEED operator as data flow between the
kernels/functions

102 103 104 105 106 107

DOF

0

20

40

60

80

%
of

ti
m

e
in

d
b

l
p

re
c

op
ap

p
ly

order 2

102 103 104 105 106 107

DOF

0

20

40

60

80
order 4

103 104 105 106 107

DOF

0

20

40

60

80
order 8

elem restriction

basis

qfunction

Figure 29: Percentage of time spent in each of the individual components of the
libCEED operator for a full-double-precision application of the diffusion operator
in BP3 with the magma-det backend. Three orders of basis functions are shown.
Results obtained on an NVIDIA V100 GPU with CUDA 11.0.

102 103 104 105 106 107

DOF

1.0

1.5

2.0

2.5

3.0

sp
ee

d
u

p
in

op
er

at
or

co
m

p
on

en
ts

order 2

elem restriction

basis

qfunction

102 103 104 105 106 107

DOF

1.0

1.5

2.0

2.5

3.0
order 4

103 104 105 106 107

DOF

1.0

1.5

2.0

2.5

3.0
order 8

Figure 30: Speedup for each individual component of the magma-det backend
inside the diffusion benchmark (BP3), for three orders of basis functions. Results
obtained on an NVIDIA V100 GPU with CUDA 11.0.

To demonstrate initial mixed-precision performance, we will consider two cases that could be considered to
reside at different ends of the mixed-precision spectrum: “high-low” and “low-high”. In the case of “high-low,”
the input and output L-Vectors will be in double precision, but they are converted to single precision upon
output from the element restriction (E), and all data movement and computation thereafter proceeds in single
precision, before finally converting back to double precision in the transpose element restriction (ET). The
“low-high” case is the opposite, where the input and output vectors are in single precision, but all computation
and intermediate values are in double precision inside the operator. This represents the case where we only

Exascale Computing Project (ECP) 27 CEED-MS37

require lower precision in the code immediately outside libCEED, but may want to perform the computation
in higher precision to accumulate less round-off error. Note that the basis data shown as “internal” (to
libCEED) input to the basis actions in Figure 28 is stored in the “second” precision, meaning the “high-low”
operator stores this data in single precision and reads it into shared memory at the beginning of the fused
kernel in single precision, in contrast to the “low-high” case.

In Figures 31 and 32 we see the speedup in the libCEED operator application and average time per
iteration, respectively, for the fused cuda-gen backend in the Ginkgo-libCEED BP3 implementation. The
all-float case is also shown for comparison. We note that the precision of the CG solver will match that of the
input/output L-Vectors, which means the “low-high” case benefits from performing the CG vector operations
– the second-costliest part of the solve, as shown in Figs. 24 and 25 – in single precision.

102 103 104 105 106 107

DOF

1.0

1.5

2.0

2.5

sp
ee

d
u

p
in

av
g

ti
m

e
p

er
op

er
at

or
ap

p
ly order 2

double

high-low

float

low-high

102 103 104 105 106 107

DOF

1.0

1.5

2.0

2.5

order 4

103 104 105 106 107

DOF

1.0

1.5

2.0

2.5

order 8

Figure 31: Speedup compared to full double precision for two mixed-precision
modes, “low-high” and “high-low,” for three orders of basis functions. All-single
precision is also shown for comparision, with the double precision line = 1 as
reference. Results obtained on an NVIDIA V100 GPU with CUDA 11.0.

102 103 104 105 106 107

DOF

1.00

1.25

1.50

1.75

2.00

sp
ee

d
u

p
in

av
g

ti
m

e
p

er
it

er
at

io
n

order 2

double

high-low

float

low-high

102 103 104 105 106 107

DOF

1.00

1.25

1.50

1.75

2.00

order 4

103 104 105 106 107

DOF

1.00

1.25

1.50

1.75

2.00

order 8

Figure 32: Speedup in average time per iteration in CG, compared to full double
precision for two mixed-precision modes, “low-high” and “high-low,” for three
orders of basis functions. All-single precision is also shown for comparison, with
the double precision line = 1 as reference. Results obtained on an NVIDIA V100
GPU with CUDA 11.0.

When the basis function order is low, as in the left plots for second order basis functions, there is no
benefit to “high-low.” This is to be expected, since the reading and writing of the L-Vectors from and
to main memory is by far the limiting factor, and “high-low” is still using double precision for L-Vectors.
The “low-high” case, on the other hand, sees speedup, albeit below that of the all-float case. However, as
we increase the order of the basis functions, we do see some benefit from applying the operator in lower
precision, with around 20% speedup in operator application for the largest problem sizes. This speedup is
enough to retain modest speedup in average time per iteration for the “high-low” case as well, despite the
CG computations still taking place in double precision.

Exascale Computing Project (ECP) 28 CEED-MS37

Mixed Precision in MAGMA

The MAGMA library supports high-performance linear algebra routines in multiple precisions (FP64, FP32,
and some FP16) that can be used as building blocks of mixed-precision solvers in libCEED. This includes
various matrix factorizations, BLAS and Batched BLAS, various routines for casting vectors from one precision
to another, as well as iterative Krylov solvers and preconditioners.

MAGMA also has a number of mixed-precision solvers that illustrate how the aforementioned building
blocks are combined in complete solvers. Algorithm 1 outlines the main idea – a matrix factorization
is computed in FP32 precision and used as preconditioner in an iterative refinement process where the
residual and the approximate solution updates are computed in FP64 precision. This iteration process,
known as mixed precision iterative refinement, has been well studied in the past and is known to converge
to FP64 accuracy under minor requirements for the matrix (e.g., not to be too ill conditioned), and the
solver/preconditioner does not have to be based on Gaussian Elimination. MAGMA has supported three
mixed-precision iterative refinement solvers since 2010 – one for general matrices where the low-precision
solver uses LU factorization with partial row pivoting, another for symmetric and positive definite matrices
that uses a Cholesky factorization, and a third one for least squares problems using QR factorizations [21]. We
have also investigated and shown how the technique works for sparse matrices where the preconditioners use
sparse direct (multifrontal or supernodal) factorizations, or where the preconditioner is replaced by another
iterative solver (leading to solvers known in the literature as inner-outer iteration) [5].

Algorithm 1 Mixed precision, Iterative Refinement Ax = b Solver

1: Compute the LU factorization of A, e.g., LU = PA . (FP32)
2: Solve Ly = Pb . (FP32)
3: Solve Ux0 = y . (FP32)
4: for k = 1, 2, . . . do
5: rk ← b−Axk−1 . (FP64)
6: Solve Ly = Prk . (FP32)
7: Solve Uzk = y . (FP32)
8: xk ← xk−1 + zk . (FP64)
9: Check convergence

10: end for

The mixed-precision solvers in MAGMA were recently enhanced to support half-precision Tensor Core
(FP16-TC) and we demonstrated that these methods can provide up to 4× speedup and FP64 accuracy
compared to the FP64 solvers [11, 10]. These results are illustrated on Figure 33. Figure 33 Left shows the
performance of the rank-k GEMMs typically used in the LU factorizations on Nvidia V100 GPUs (providing
upper bound for the performance of the factorization), and Figure 33 Right shows the performance acceleration
achieved using the new mixed-precision solvers. The condition numbers of the matrices used and the number
of iterations to reach FP64 accuracy are also given for the different solvers. The outer iteration in these
solvers use GMRES.

The mixed-precision iterative refinement solvers were also ported to HIP to support AMD GPUs. Figure 34
Left shows the performance from the MAGMA xGEMM benchmark in the FP64, FP32, and FP16 arithmetic,
respectively, on the MI100 GPUs in Spock. The currently achievable performance on these rank-k GEMMs
(using ROCm 4.2) is lower than the theoretical peaks. Also, there are a lot of variations in the performance,
e.g., in the range of 10 to 30 TFLOPs for both FP32 and FP16. We observe that the rank-k FP16 GEMMs
are about the same performance as the FP32 ones. Because of this, we developed the mixed-precision iterative
refinement using just FP32-FP64 arithmetic, shown on Figure 34 Right. The speedup is about two times, as
expected. The mixed-precision solver converged to FP64 accuracy from 3 iterations on the smallest problem
to 16 iterations for the largest problem, using random matrices.

The mixed-precision solvers and their building blocks for either CUDA or HIP are available through the
recent MAGMA 2.6 release.

Exascale Computing Project (ECP) 29 CEED-MS37

m=n
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k 28k 30k

Tf
lo

p/
s

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

FP16 TC square
FP16 TC k=256

FP16 square
FP16 k=256

FP32 square
FP32 k=256

FP64 square
FP64 k=256

Matrix size
2k 4k 6k 8k 10k 14k 18k 22k 26k 30k 34k

Tf
lo

p/
s

0
2
4
6
8

10
12
14
16
18
20
22
24

2
5
3

2
63 2

6
3

2
6
3

2
6
3 2

6
3

2

6
3

2

6

3

2

6

3

2

7

3

2

7

3

2

6

3
Performance of solving Ax=b

using FP64 or IR with GMRes to achieve FP64 accuracy
FP16-TC->64 dhgesv
FP16->64 dhgesv
FP32->64 dsgesv
FP64 dgesv

κ
∞
(A

)

100

101

102

103

104

105

4X

Figure 33: Left: Performance of the rank-k GEMMs typically used in the LU
factorizations on Nvidia V100 GPUs. Right: Performance comparison (computed

as (2
3
n3 + 3n2

2
− n

6
) / time in GFlop/s) of the FP64 solver and the mixed-precision

solvers in MAGMA, achieving FP64 accuracy.

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

25
6	

10
24
	

17
92
	

25
60
	

33
28
	

40
96
	

48
64
	

56
32
	

64
00
	

71
68
	

79
36
	

87
04
	

94
72
	

HGEMM_EX-­‐1024	

HGEMM-­‐1024	

SGEMM-­‐512	

DGEMM-­‐256	

Performance	
 of	
 rank-­‐k	
 GEMM	
 on	
 Spock	
 MI100	
 GPUs	

(k=1024	
 in	
 FP16,	
 k=512	
 in	
 FP32,	
 and	
 k=256	
 in	
 FP64)	

Matrix size (m=n)

Spock system at ORNL
GPU: AMD MI100
FP64 peak 11.5 Tflop/s
FP16 peak 184 Tflop/s

Mixed	
 precision	
 itera/ve	
 refinement	
 Ax	
 =	
 b	
 solver	

(using	
 FP32-­‐FP64	
 precisions,	
 achieving	
 FP64	
 accuracy)	

	
 	

Matrix size

0	

2000	

4000	

6000	

8000	

10000	

12000	

50
00
	

10
00
0	

15
00
0	

20
00
0	

25
00
0	

30
00
0	

35
00
0	

40
00
0	

44
00
0	

FP32-­‐FP64	

FP64	

Spock system at ORNL
GPU AMD MI100 (1.5 GHz, 32 GB)
 11.5 FP64 Tflop/s, 184 FP16 Tflop/s
CPU AMD EPYC 7662 (64-core)

Figure 34: Left: Performance of the rank-k GEMMs typically used in the
LU factorizations on GPUs. Right: Performance comparison (computed as

(2
3
n3 + 3n2

2
− n

6
) / time in GFlop/s) of the FP64 solver and the mixed-precision

FP32-FP64 solver in MAGMA, achieving FP64 accuracy. All experiments use
ROCm 4.2.

6. SOFTWARE RELEASES

During the milestone period, the CEED team released new versions of 6 of its packages, including major
releases of MFEM, NekRS and OCCA.

6.1 MFEM-4.3

Version 4.3 of MFEM was released on July 29, 2021. Some of the new additions in this release are:

• Variable order spaces, serial p- and hp-refinement.

• Low order refined discretizations, solvers and transfer.

• Preconditioners for advection-dominated systems.

• Support for GPU solvers from hypre and PETSc.

• GPU-accelerated mesh optimization algorithms.

Exascale Computing Project (ECP) 30 CEED-MS37

• Explicit vectorization for Fujitsu’s A64FX ARM microprocessor.

• Support for high-order Lagrange meshes in VTK format.

• New and improved integrations with FMS, Caliper, libCEED, Ginkgo.

• 11 new examples and miniapps.

For more details, see the interactive documentation at https://mfem.org and the full CHANGELOG at
https://github.com/mfem/mfem/blob/v4.3/CHANGELOG.

6.2 NekRS-21.1

Version 21.1 of NekRS was released with new support for flexible GMRES, constant flow rate, time step
controller for target CFL, improved runtime statistics, support for ROCm version (>v4.0), nonlinear artificial
viscosity methods for scalar transport, FEMSEM preconditioner, low-storage A-orthogonal projection for
initial guesses, updated user-defined file (nekrs.upd) for runtime modifications, validated key/value input in
parfile, and various bug fixes. These improvements add to earlier NekRS features that include: k-τ RANS
models, low-Mach formulation, run-time averaging for turbulence statistics, ALE with elliptic solvers for
mesh motion, conjugate heat transfer, full stress formulation for variable-property support, and recycling
boundary conditions.

6.3 FMS-0.2

Version 0.2 of FMS, CEED’s high-order field and mesh specification was released on September 10th, 2021.
Some of the new additions in this release are:

• Lightweight API to represent general finite element meshes + fields

• I/O in ASCII and Conduit binary format

• FMS visualization support in VisIt v3.2

• Common, easy to use framework

For more details, see the CHANGELOG at https://github.com/CEED/FMS/blob/v0.2/CHANGELOG.

6.4 MAGMA-2.6.1

MAGMA 2.6.1 was released on July 13, 2021. This is a major release that added HIP support for AMD
GPUs (former hipMAGMA) as part of MAGMA. Support was added for MAGMA Sparse and mixed-
precision solvers on AMD GPUs, as well as numerous performance improvements for AMD GPUs. See
https://icl.utk.edu/magma/software/ for download and further details.

6.5 PUMI-2.2.6

PUMI version 2.2.6 was released and includes improved high order mesh adaptation and field support, support
for Simmetrix SimModSuite 15.0-210501, support for GCC 11, and a bug fix for GCC 10. Additional details
are available at https://github.com/SCOREC/core/issues/341.

6.6 OCCA-1.2.0

This section provides detailed review of the new features, capabilities, bug fixes, and other changes that were
part of the OCCA v1.2.0 release. In addtion to the features described below, see also Section 3.4 for the new
DPC++ Backend in OCCA which was part of this release.

The release includes contributions from the main architect of OCCA David Medina as part of the CEED
project and also by members of the OCCA and CEED development community including: Noel Chalmers
(AMD Research), Damon McDougall (AMD Research), Anoop Madhusoodhanan Prabha (Intel), Cedric
Andreolli (Intel), Kris Rowe (ALCF), Phillipe Thierry (Intel), Saumil Patel (ALCF), Jed Brown (UColorado

Exascale Computing Project (ECP) 31 CEED-MS37

https://mfem.org
https://github.com/mfem/mfem/blob/v4.3/CHANGELOG
https://github.com/CEED/FMS/blob/v0.2/CHANGELOG
https://icl.utk.edu/magma/software/
https://github.com/SCOREC/core/issues/341

at Boulder), Stefan Frijters (Shell), Malachi Timothy Phillips (UIUC). Text from the constituent pull requests
making up the OCCA v1.2.0 release have been adapted for inclusion in this report format.

occa::forLoop and inlined kernels. The OCCA v1.2.0 release includes several new experimental features
to the OCCA library. They are still in the experimental stage, mainly due to performance reasons. We
found an initial approach to enabling inlined lambdas and are experimenting with them to explore the trade
offs between capability and performance. The OCCA v1.2.0 release includes increased support for inlining
OCCA kernels in a single-source fashion whereas in previous non experimental versions this was very much
an experimental feature. As a basic example of inlining an OCCA kernel in single-source code we generate
here a for-loop that loops through [0, N) tiled by tileSize with the following syntax:

1 occa:: forLoop ()

2 .tile({N, tileSize })

3 .run(scope , OCCA_FUNCTION ([=](const int index) -> void {

4 // ...

5 }));

The tiling can alternatively be done manually through the inclusion of .inner and .outer member function
calls that can be for instance translated into for CUDA threads and thread-blocks respectively by the CUDA
backend.

1 occa:: forLoop ()

2 .outer(occa::range(0, N, tileSize))

3 .inner(tileSize)

4 .run(scope , OCCA_FUNCTION ([=](const int outerIndex , const int innerIndex) -> void {

5 const int index = innerIndex + (tileSize * innerIndex);

6 // ...

7 }));

Inlining idexing & multi-dimension kernels. The OCCA v1.2.0 release enables inlined single source
kernels to use multilevel parallelism with inner and outer loops. Here we give an example where an index
array is passed rather than a simple occa::range. Additionally, this @inner loop has 2 dimensions so the
expected OCCA FUNCTION should be supplied with an int2 variable for the inner indices

1 occa::array <int > indices;

2 // ...

3 occa:: forLoop ()

4 .outer(indices)

5 .inner(X, Y)

6 .run(scope , OCCA_FUNCTION ([=](const int outerIndex , const int2 innerIndex) -> void {

7 // ...

8 }));

occa::array and Functional Programming. The OCCA v1.2.0 release provides a wrapper on occa::memory

objects which includes type information and contains some of the core map and reduce functional methods.

1 const double dynamicValue = 10;

2 const double compileTimeValue = 100;

3

4 occa::scope scope({

5 // Passed as arguments

6 {"dynamicValue", dynamicValue}

7 }, {

8 // Passed as compile -time #defines

9 {"defines/compileTimeValue", compileTimeValue}

10 });

11

12 occa::array <double > doubleValues = (

13 values.map(OCCA_FUNCTION(scope , [](int value) -> double {

14 return compileTimeValue + (dynamicValue * value);

15 }));

16);

The release includes a helper method occa::range which implements most of the occa::array methods but
can be used without allocating data before iteration. It is useful if there is no specific input/output but still
need to call a generic map or reduce function.

Exascale Computing Project (ECP) 32 CEED-MS37

1 // Iterates through [0, 1, 2]

2 occa::range (3).map (...);

3

4 // Iterates through [3, 4, 5]

5 occa::range(3, 6).map (...);

6

7 // Iterates through [6, 5, 4]

8 occa::range(6, 3).map (...);

9

10 // Iterates through [0, 2, 4]

11 occa::range(0, 6, 2).map (...);

12

13 // Iterates through [6, 4, 2]

14 occa::range(6, 0, -2).map (...);

15

16 // No -op since there isn’t anything to iterate through

17 occa::range(6, 0, 1).map (...);

The occa::array class now supports the following functionality:

• Core methods: forEach, mapTo, map, reduce

• Reduction types: every, max, min, some

• Re-indexing: reverse, shiftLeft, shiftRight

• Utilities: cast, clamp, clampMax, clampMin, concat, dot, fill, slice

• Search: findIndex, find, includes, indexOf, lastIndexOf

Atomics. The OCCA v1.2.0 release includes new experimental support for the natural inclusion of atomic
operations with the OCCA kernel language (OKL) 2 The initial support for the OCCA GPU backend modes
(HIP, CUDA, OpenCL) do not yet have general atomics implemented but do have the following basic updates:

1 @atomic value += update;

2 @atomic value -= update;

3 @atomic value &= update;

4 @atomic value |= update;

5 @atomic value ^= update;

An example of an inlined atomic expression:

1 @atomic *ptr += value;

Alternatively code blocks can be made atomic (where possible) as

1 @atomic {

2 *ptr += value;

3 }

and even generic @atomic blocks are also possible

1 @atomic {

2 *ptr += value;

3 *ptr2 += value2;

4 }

Refactor of the OCCA code transformation infrastructure. In OCCA v1.2.0 the way statement and
expression code transformations are performed have been fully rewritten. A functional occa::lang::array
class was introduced to help with statement and expression iteration and transformation. Additionally the
occa::lang::expr class helps create expressions easily without having to worry about pointers or underlying
node objects.

2Although @atomic is fully available for Serial and OpenMP modes there is probably still room for improvement in the
OpenMP implementation.

Exascale Computing Project (ECP) 33 CEED-MS37

Improved handling of OCCA memory slicing. OCCA v1.2.0 includes changes to the internal handling
of how references to backend memory allocations are counted so they can be more reliably destroyed, and
prevent memory access violations via invalidated pointers. These changes are entirely internal to OCCA and
do not change the public API, or alter current behavior of OCCA applications. Summary of issue: Prior
to v1.2.0 modeMemory t objects were not track whether if they were created by slicing another modeMemory t

object. Consequently, only the original modeMemory t object can free the underlying device memory allocation,
and would do so even if there still existed modeMemory t objects referencing the device memory. This resulted
in dangling references. As an example

1 {

2 occa:: memory o_a;

3 {

4 occa:: memory o_A = device.malloc <float >(2* entries); // Create a new buffer

5 o_a = o_A + entries; // o_a is a slice into o_A

6 } //o_A is destroyed here because it’s reference counting is separate from o_a.

7 // The underlying device memory is also destroyed

8

9 // o_a is now invalid , but doesn ’t know the original device memory is free’d

10

11 // Using o_a will result in an access violation

12 myKernel(entries , o_a); //Fault

13

14 } //o_a destroyed here , but since it’s not the origin , there ’s no double free

Noel Chalmers contributed a pull request to address this behavior. The new buffer objects wrap device
memory allocations and track their modeMemory t references, created via slicing. The buffer and wrapped
device allocation are destroyed once their reference count reaches zero.

7. OTHER PROJECT ACTIVITIES

7.1 CEED Annual Meeting

The CEED project held its fifth annual meeting August 3-4, 2021 with participation from 97 researchers
from 8 national labs, 20 universities and 8 companies.

The goal of the meeting was to report on the progress in the center, deepen existing and establish new
connections with ECP hardware vendors, ECP software technologies projects and other collaborators, plan
project activities and brainstorm/work as a group to make technical progress. In addition to gathering
together many of the CEED researchers, the meeting included representatives of the ECP management,
hardware vendors, software technology and other interested projects.

7.2 MFEM Community Workshop

The MFEM team at LLNL is hosting the inaugural MFEM Community Workshop, a one-day virtual workshop
designed to bring together users of the MFEM library, application scientists, researchers, students, and others
who take an interest in finite elements. The goals of the workshop are to foster collaboration among users and
developers of the MFEM, share the latest MFEM features with the broader community, deepen application
engagements, and solicit feedback to guide future development directions for the project.

This workshop will be held on October 20, 2021, and has already seen over 150 attendees registered,
from 25 countries and 82 institutions. The workshop will include talks both from members of the CEED
project, and from outside contributors who have used and extended MFEM in their application domains.
This workshop is intended to be an annual occurrence, with both virtual and in-person components in the
future.

7.3 Efficient Sub-Domain Fields and MFEM Integration in Omega h

APIs were added to Omega h to support reverse classification queries (e.g., what mesh faces are classified on
a given set of geometric model faces) and associate user data with the mesh entities returned by those queries.
These APIs address the ability to define Omega h field structures on specific groups of mesh entities of a
selected dimension without the need to store a field on all the mesh entities of that dimension. A common

Exascale Computing Project (ECP) 34 CEED-MS37

case is a varying natural boundary condition applied to a model face. Now that field information can be
associated with the mesh entities classified on that model face without the need to define a field overt all
mesh faces in the entire finite element mesh. Having such field information in an Omega h structure is needed
to support proper field transfer during conforming mesh adaptation.

In addition, initial in-memory support for conforming mesh adaptive loops using MFEM and Omega h on
simplex meshes with low-order fields was implemented. This includes conversion from the MFEM partitioned
mesh, and fields defined on it, to the Omega h representation before mesh adaptation and conversion back to
MFEM after adaptation.

7.4 ECP GitLab CI at OLCF

Following instructions given at the ECP annual meeting, and with support from ORNL, GitLab CI running
on the OLCF Ascent system (a small version Summit) was setup for Omega h.

8. CONCLUSION

In this milestone we ported the CEED software stack, including Nek, MFEM and libCEED to the Frontier
and Aurora early access hardware, and worked on optimizing the performance on AMD and Intel GPUs.

As part of this milestone, we also released new versions of six of the CEED software packages, including
major releases of MFEM, NekRS and OCCA, organized the fifth CEED Annual meeting and continued to
improve the performance of high-order methods on a variety of hardware including V100, MI100, A100 and
A64FX systems.

Exascale Computing Project (ECP) 35 CEED-MS37

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing Project (ECP), Project Number: 17-SC-20-SC,
a collaborative effort of two DOE organizations—the Office of Science and the National Nuclear Security
Administration—responsible for the planning and preparation of a capable exascale ecosystem—including
software, applications, hardware, advanced system engineering, and early testbed platforms—to support the
nation’s exascale computing imperative.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344, LLNL-TR-827178.

The research used resources of the Argonne Leadership Computing Facility, which is supported by the
U.S. Department of Energy, Office of Science, under Contract DE-AC02-06CH11357. This research also
used resources of the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC05-00OR22725.
Support was also given by the Frontier Center of Excellence.

Exascale Computing Project (ECP) 36 CEED-MS37

REFERENCES

[1] Hartwig Anzt, Terry Cojean, Yen-Chen Chen, Goran Flegar, Fritz Göbel, Thomas Grützmacher, Pratik
Nayak, Tobias Ribizel, and Yu-Hsiang Tsai. Ginkgo: A high performance numerical linear algebra library.
Journal of Open Source Software, 5(52):2260, 2020.

[2] Hartwig Anzt, Terry Cojean, Goran Flegar, Fritz Göbel, Thomas Grützmacher, Pratik Nayak, Tobias
Ribizel, Yuhsiang Mike Tsai, and Enrique S. Quintana-Ort́ı. Ginkgo: A modern linear operator algebra
framework for high performance computing, 2020.

[3] R. Balakrishnan, R. Kotamarthi, and P. Fischer. Large eddy simulation of isothermal and non-isothermal
turbulent flows in ventilated classrooms. In ECOFTAC 13th Conference on Engineering, Turbulence,
Modelling and Measurements, Rhodes, Greece, 2021.

[4] Jed Brown, Veselin Dobrev, Som Dutta, Paul Fischer, Kazem Kamran, Tzanio Kolev, David Medina,
Misun Min, Thilina Ratnayaka, Mark Shephard, Cameron Smith, and Jeremy Thompson. CEED ECP
Milestone Report: Propose high-order mesh/data format, June, 2018.

[5] Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Piotr Luszczek, and Stanimir Tomov. Using mixed
precision for sparse matrix computations to enhance the performance while achieving 64-bit accuracy.
ACM Trans. Math. Softw., 34(4), July 2008.

[6] N. Chalmers and T. Warburton. streamParanumal: Portable CEED benchmark streaming tests, 2020.
Release 1.0.0.

[7] Veselin Dobrev, Jack Dongarra, Jed Brown, Paul Fischer, Azzam Haidar, Ian Karlin, Tzanio Kolev,
Misun Min, Tim Moon, Thilina Ratnayaka, Stanimire Tomov, and Vladimir Tomov. ECP Milestone
Report CEED-MS6: Identify initial kernels, bake-off problems (benchmarks) and miniapps, July, 2017.

[8] A. Fabregat, F. Gisbert, A. Vernet, S. Dutta, K. Mittal, and J. Pallaré. Direct numerical simulation of
the turbulent flow generated during a violent expiratory event. physflu, 33:035122, 2021.

[9] Dominik Göddeke, Robert Strzodka, and Stefan Turek. Accelerating double precision FEM simulations
with GPUs. Univ., 2005.

[10] Azzam Haidar, Harun Bayraktar, Stanimire Tomov, Jack Dongarra, and Nicholas Higham. Mixed-
precision iterative refinement using tensor cores on gpus to accelerate solution of linear systems. Royal
Society of London. Proceedings A. Mathematical, Physical and Engineering Sciences, September 2020.

[11] Azzam Haidar, Stanimire Tomov, Jack Dongarra, and Nicholas J. Higham. Harnessing gpu tensor cores
for fast fp16 arithmetic to speed up mixed-precision iterative refinement solvers. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage, and Analysis, SC ’18.
IEEE Press, 2018.

[12] David S Kershaw. Differencing of the diffusion equation in lagrangian hydrodynamic codes. Journal of
Computational Physics, 39(2):375–395, 1981.

[13] Tzanio Kolev, Paul Fischer, Anthony P. Austin, Andrew T. Barker, Natalie Beams, Jed Brown, Jean-
Sylvain Camier, Noel Chalmers, Veselin Dobrev, Yohann Dudouit, Leila Ghaffari, Stefan Kerkemeier, Yu-
Hsiang Lan, Elia Merzari, Misun Min, Will Pazner, Thilina Rathnayake, Mark S. Shephard, Morteza H.
Siboni, Cameron W. Smith, Jeremy L. Thompson, Stanimire Tomov, and Tim Warburton. ECP
Milestone Report CEED-MS36: High-order algorithmic developments and optimizations for large-scale
GPU-accelerated simulations, March 31, 2021.

[14] Kai Liu, Majid Allahyari, Jorge S Salinas, Nadim Zgheib, and S Balachandar. Peering inside a cough or
sneeze to explain enhanced airborne transmission under dry weather. Scientific Reports, 11, 1:1–9, 2021.

[15] J. Malm, P. Schlatter, P.F. Fischer, and D.S. Henningson. Stabilization of the spectral-element method
in convection dominated flows by recovery of skew symmetry. J. Sci. Comp., 57:254–277, 2013.

Exascale Computing Project (ECP) 37 CEED-MS37

[16] B.E. Merrill, Y.T. Peet, P.F. Fischer, and J.W. Lottes. A spectrally accurate method for overlapping
grid solution of incompressible Navier-Stokes equations. J. Comput. Phys., 307:60–93, 2016.

[17] Ketan Mittal, Som Dutta, and Paul Fischer. Nonconforming Schwarz-spectral element methods for
incompressible flow. Computers and Fluids, 191, 2019.

[18] Ketan Mittal, Som Dutta, and Paul Fischer. Multirate time-stepping for the incompressible Navier-Stokes
equations in overlapping grids. jcp, 437:110335, 2020.

[19] Robert Strzodka and Dominik Göddeke. Mixed precision methods for convergent iterative schemes.
EDGE, 6:23–24, 2006.

[20] Kasia Świrydowicz, Noel Chalmers, Ali Karakus, and Timothy Warburton. Acceleration of tensor-product
operations for high-order finite element methods. arXiv preprint arXiv:1711.00903, 2017.

[21] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra. Dense linear algebra solvers for multicore with GPU
accelerators. In Proc. of the IEEE IPDPS’10, pages 1–8, Atlanta, GA, April 19-23 2010. IEEE Computer
Society. DOI: 10.1109/IPDPSW.2010.5470941.

[22] David Zwick and S. Balachandar. A scalable Euler–Lagrange approach for multiphase flow simulation
on spectral elements. IJHPCA, 34, 3:316–339, 2020.

Exascale Computing Project (ECP) 38 CEED-MS37

	Executive Summary
	List of Figures
	List of Tables
	Introduction
	CEED Applications and Performance on Summit
	Non-Deterministic (fast) Kernels for V100 GPUs in MFEM
	Breakthrough: MFEM Generated Kernels with Reduced N0.8 on NVIDIA GPUs
	ExaWind Atmospheric Boundary Layer Flow Modeling, Convergence and Performance
	Rapid Turn-Around Full-Core Reactor Simulations on Summit
	Lagrangian Particle Tracking for COVID-19 Research

	CEED Results on Frontier and Aurora EA Systems
	ExaSMR 1717 Rod-Bundle Strong Scaling Performance on Spock
	MFEM fast Kernels on AMD MI100 GPUs
	libParanumal Performance on AMD MI100 GPUs
	OCCA DPC++ Backend

	CEED Performance on Fugaku and A100
	Nek5000/NekRS Advances on Fugaku
	MFEM's A64FX Results
	ExaSMR Single Rod Performance on A100 GPUs
	MFEM BP1 Results and Tensor-Core MMA Kernels for A100 GPUs

	Additional Topics
	JIT in Applications at Scale
	Potential of Mixed Precision in CEED Algorithms

	Software Releases
	MFEM-4.3
	NekRS-21.1
	FMS-0.2
	MAGMA-2.6.1
	PUMI-2.2.6
	OCCA-1.2.0

	Other Project Activities
	CEED Annual Meeting
	MFEM Community Workshop
	Efficient Sub-Domain Fields and MFEM Integration in Omega_h
	ECP GitLab CI at OLCF

	Conclusion

