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EXECUTIVE SUMMARY

The goal of this milestone was to improve the high-order software ecosystem for CEED-enabled ECP
applications by making progress on e�cient matrix-free kernels targeting forthcoming ECP architectures.
These kernels included matrix-free preconditioning and the development of new set of CEED solver bake-o↵
problems.

As part of this milestone, we also released the next version of the CEED software stack, CEED-4.0,
reported on results from several application collaborations, and documented the e↵orts of porting to AMD
GPUs for Frontier and other modern architectures, such as Fugaku.

The specific tasks addressed in this milestone were:

• Port and run CEED benchmarks/miniapps on Frontier EA systems.

• Demonstrate performant libCEED integration in MFEM, Nek and applications.

• Matrix-free preconditioning of high-order operators.

• Benchmark problems for fast high-order solvers on GPU platforms.

• Public release of CEED-4.0.

The artifacts delivered include the next version of the CEED software stack, CEED-4.0, the next libCEED
release, libCEED-0.8, and a number of developments integrated within applications to improve their GPU
and CPU performance and capabilities. See the CEED website, https://ceed.exascaleproject.org and
the CEED GitHub organization, https://github.com/ceed for more details.
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1. INTRODUCTION

The goal of this milestone was to improve the high-order software ecosystem for CEED-enabled ECP
applications by making progress on e�cient matrix-free kernels targeting forthcoming ECP architectures.
These kernels included matrix-free preconditioning and the development of new set of CEED solver bake-o↵
problems.

As part of this milestone, we also released the next version of the CEED software stack, CEED-4.0,
reported on results from several application collaborations, and documented the e↵orts of porting to AMD
GPUs for Frontier and other modern architectures, such as Fugaku.

The artifacts delivered include the next version of the CEED software stack, CEED-4.0, the next libCEED
release, libCEED-0.8, and a number of developments integrated within applications to improve their GPU
and CPU performance and capabilities. See the CEED website, https://ceed.exascaleproject.org and
the CEED GitHub organization, https://github.com/ceed for more details.

2. MATRIX-FREE PRECONDITIONING OF HIGH-ORDER OPERATORS

Numerical solution of elliptic subproblems is a bottleneck in many multiphysics simulations. The challenge is
often intrinsic to the sti↵ness of the underlying PDE where operators with fast timescale have been replaced
by infinitely fast ones, which manifest as a steady-state elliptic problem at each timestep. The e�ciency gains
made with these models are generally worthwhile because they often lead to simpler, linear, subproblems
that can be decoupled from other substeps (e.g., as in the case of incompressibility in the Navier–Stokes
equations or the electric potential in the Poisson–Nernst–Planck equations), and can be preconditioned with
well-understood techniques such as multigrid and multilevel Schwarz methods. Despite the fact that “fast”
techniques are available for these problems, they often remain the most time-consuming step in the simulation,
which makes the pursuit of faster techniques of continued interest, particularly for the Poisson problem.

A characteristic of the Poisson problem is that the Green’s functions have long tails—distant information
can have a nontrivial impact everywhere—problem is thus inherently communication intensive. Such problems
are particularly challenging on GPU-based platforms where nonlocal communication costs are high compared
with the rate of local work. In particular, e�cient multilevel solvers require solution of coarse grid problems
that have just a few degrees of freedom (dofs) per node and are communication dominated.

High-order discretizations for elliptic problems bring their own set of challenges. Per degree of freedom
(dof), the condition number of the high-order sti↵ness matrix is higher than equivalent low-order discretizations.
The sti↵ness matrix, if formed, is locally dense with O(p6) nonzeros per element for a pth-order FEM in 3D.
Thus, for fast matrix-free formulations, the sti↵ness matrix is never formed and, and is therefore not available
to be passed into black-box solvers such as algebraic multigrid (AMG).

There are, however, some structural advantages to high-order methods that lend themselves to precondi-
tioning. These methods support a natural set of nested subspaces in that one can approximate the solution
at lower polynomial order on the same mesh topology, which leads to p-multigrid (PMG), with the coarsest
level corresponding to p = 1. For hex-based elements of order p = 7, the reduction in problem size is a
factor of p3 = 343, until one reaches the unstructured coarse grid problem (p = 1), which can then be
addressed by AMG. A variety of smoothers can be considered, including alternating line [19], Schwarz [24],
Chebyshev-Jacobi. In the case of Qp elements (i.e., quads and hexes) an e↵ective strategy is to construct
a low-order finite element (FEM) approximation on the high-order nodal points. As first noted by Orszag
[31], such an approach leads to bounded condition numbers, independent of (E, p), where E is the number of
elements and p is the polynomial order. Consequently, the solution of a high-order problem is turned into
one of solving a low-order (sparse) problem, albeit one with geometric challenges.

2.1 CEED solver bake-o↵ problems

Because this problem is ubiquitous and continues to be challenging, the CEED project has initiated a new set
of bake-o↵ problems (BPs) in which developers are invited to bring forth their best ideas to solve large-scale
high-order Poisson problems for a variety of challenging test cases and to share these with the scientific
simulation community. These bake-o↵ problems for solvers (BPSs) were designed with the following goals:
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• Propose a new set of BPs that address the challenge of scalable linear system solves for high-order
methods.

• The new BPs specify the problem (with emphasis on high-order discretizations) and convergence criteria,
but not the preconditioning method.

• This activity is intended as a collaboration with the ECP ST solver teams, particularly hypre and
PETSc.

• In addition to developing the specifications of the new BPs, the CEED team is also providing imple-
mentations and is working on optimizing their performance.

• This work involves solver algorithms in Nek, MFEM and libParanumal as well as GPU-specific solver
optimizations, similar to the current BPs.

• The solver BPs will be documented on the CEED website.

The first task in designing the solver bake-o↵ problem is to specify the problem geometry. It is of
significant interest to understand the solver performance on curved and distorted geometries, with potentially
high-aspect-ratio elements. For that reason, the bake-o↵ problem is posed on a family of meshes, which we
refer to as Kershaw meshes [21]. This family is parameterized by two anisotropy parameters "y, "z 2 (0, 1],
such that the resulting mesh is completely uniform for "y = "z = 1, and the mesh becomes increasingly
anisotropic as "y and "z decrease. The Kershaw mesh is obtained by deforming a uniform grid of the unit
cube as follows. The x-axis is decomposed into 6 equally spaced layers. Elements with aspect ratios 1/"y and
1/"z are placed in the leftmost and rightmost layers, in opposing corners, and the intermediate layers are used
to transition between these configurations in a Z pattern. The transition function may be piecewise linear
“ramp” function (s = 1, where s denotes the polynomial degree of the transition), or it may be a smoothed
version, either a C1 cubic (s = 3) or a C2 quintic (s = 5). Several di↵erent configurations of the Kershaw
mesh are shown in Figure 1.

To date, we have preliminary results from several groups within CEED and an initial problem specification.
The study was advertised at SIAM CSE in March, 2021, and we have been contacted by the deal.II group in
Germany, who are interested in participating. The current problem specification is listed below.

• Mesh setup

– straight-sided Kershaw mesh (s = 1,
with distortion parameters "y, "z)

– baseline: "y = "z = 1,
hard: "y = "z = 0.3

– staring with 6⇥ 6⇥ 6 and increase by 6

• Boundary conditions

– pure Dirichlet

– must also support pure Neumann

• Stopping criteria

– relative l2 residual reduction: 10�8

• Plotting

– x-axis: increasing problem size (ndofs)

– y-axis: 1) iterations 2) solve time

– curves for varying order

• CSV values to report

– code ID

– preconditioner ID

– machine ID

– number of nodes

– number of MPI ranks

– nx, ny, nz

– solution polynomial degree

– number of 1D quadrature points

– "y, "z

– ndofs (including Dirichlet boundary)

– niter

– initial and final residuals

– error

– tsetup (preconditioner setup)

– tsolve (total iter time)
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"y = "z = 1, s = 1 "y = 0.3, "z = 1, s = 1

"y = 1, "z = 0.3, s = 1 "y = "z = 0.3, s = 1

"y = "z = 0.3, s = 3 "y = "z = 0.3, s = 5

Figure 1: Configurations of the Kershaw mesh for di↵erent values of the
anisotropy parameters "y and "z and degree s of the smoothed transition function.

We intend to also monitor the accuracy of the numerical approximation by prescribing a polychromatic
right-hand side with known solution. It is important that such a solution be smooth so that spectral
asymptotic convergence is possible, and yet contain multiple scales so the solution has genuinely global
dependence on the forcing. For simplicity in implementing and varying boundary conditions, we also create a
solution with zero Dirichlet and Neumann conditions, in which the continuous mean over the domain is zero.
We consider the domain x 2 (�1, 1) and the primitive sk(x) = sin(2k⇡x) in

uk(x) = exp(�1/s2k) sign(sk).

To achieve arbitrary solution complexity, we call n 2 {1, 2, . . . } the structure level and define the corresponding
solution

wn(x) =
n�1X

j=0

u3j (x),
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which we plot in Figure 2, alongside the second derivatives that appear in the corresponding forcing terms.

Figure 2: Solution wn(x) (left) and second derivatives w00
n(x) (right) appearing

the corresponding forcing terms at multiple structure levels n. Note that fine-scale
features dominate the forcing terms at higher structure levels, but only generate
solution features equivalent in size to the low frequencies.

This choice of solution requires all scales to be resolved equally to achieve a given accuracy, and high
resolution can be demanded using higher structure levels n. It is extended to 3D via tensor product,
wn(x)wn(y)wn(z). In order to facilitate comparisons of methods with di↵erent basis functions, we propose
a convergence test based on a continuous (rather than discrete) norm of the error, which can be evaluated
during a warm-up solve and used to define the discrete criteria needed during the timed solves.

We refer to the above problem as CEED BPS3, i.e. the solver version of the CEED BP3 bake-o↵ problem.
Similarly CEED BPS5 refers to the CEED solver bake-o↵ problem corresponding to the discretization for
CEED BP5. In the following sections we present results from several of the CEED teams. The presentation
and platforms are not yet uniform—these are preliminary results and we are still exploring the best approach
to developing a robust problem specification that will be of maximal utility.

2.2 Initial BPS3 results with MFEM

Preliminary results using MFEM are available for the BPS3 solver bake-o↵ problem. We have developed
a miniapp that solves the given Poisson problem on the Kershaw mesh, allowing the user to specify
the problem parameters (mesh size, distortion, polynomial degree, etc.) and preconditioner in a flexible
manner. The MFEM miniapp supports a variety of matrix-free preconditioners, built using a flexible
combination of h-multigrid, p-multigrid, and low-order refined (LOR, or FEM–SEM) preconditioning. These
preconditioning options are suitable both for the CPU and GPU. The coarsest level in the geometric multigrid
hierarchy is approximately solved using an algebraic multigrid method. Both hypre and NVIDIA’s AMGX
algebraic multigrid methods are supported. Additionally, the user can control the parameters of the AMGX
preconditioner using a JSON configuration file.

Results using two solver approaches on two variants of the Kershaw mesh are shown in Figure 3. The
geometric hp-multigrid preconditioner gives the best performance for the case of the uniform grid ("y = "z = 1),
but performance degrades significantly on the highly distorted mesh ("y = "z = 0.3). On the other hand,
while the LOR preconditioner results in somewhat slower convergence on the uniform grid when compared
with hp-MG, the iteration counts remain bounded and compare favorably with the hp-MG preconditioner on
the distorted mesh case.

We also remark on the importance of the choice of quadrature rule used for the low-order refined
discretization. In particular, significantly improved convergence can be obtained by using collocated Gauss–
Lobatto quadrature on the low-order refined mesh (i.e. quadrature points at the mesh vertices), when
compared with more accurate Gauss–Legendre quadrature. This corroborates the single-element results for
spectral methods shown in [9]. Although both preconditioners give uniform convergence (independent of the
polynomial degree) the constants are significantly improved using the collocated quadrature. The collocated
quadrature has the additional advantage that the resulting system is both sparser and more amenable to AMG
preconditioning, making the resulting LOR preconditioner more e↵ective and less expensive to form. In Figure
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Figure 3: MFEM iteration counts for BPS3. Left column: hp-multigrid with
Chebyshev smoothing and AMGX coarse solve. Right column: LOR precondi-
tioning with AMGX V-cycle. Top row: uniform grid ("y = 1.0). Bottom row:
highly distorted mesh ("y = 0.3).

4, the iteration counts using these two approaches are compared. We additionally consider the “one-per-vertex”
tetrahedral LOR discretization proposed in [5]. For the BPS3 test case, this tetrahedral discretization results
in identical sparsity pattern as the collocated quadrature, and almost identical preconditioning performance.
However, as reported in [5], we expect the convergence to be significantly improved on cases with pure
Neumann boundary conditions.
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Figure 4: Comparison of iteration counts using LOR preconditioning with
Gauss–Legendre quadrature (left) and collocated quadrature at vertices (right)
for BPS3.

2.3 Initial BPS3 and BPS5 results with libParanumal

The CEED Virginia Tech team has upgraded the architecture of the libParanumal [10] linear solvers and
the multigrid preconditioner hierarchy. Major updates including improved initial guesses when solving a
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sequence of linear systems [4]; switching storage of unknown from E-vectors to L-vectors (as used in [32]);
and a comprehensive top-to-bottom overhaul and optimization of the algebraic multigrid, SEM-FEM, and
p-multigrid preconditioning modules. These upgrades will be described in future publications.

For CEED BPS benchmarking we extended libParanumal to enable creation of Kershaw mapping of
domains [21]. The exact solution was specified as a tensor product of sine functions.

When we analyzed the initial performance of the CEED BPS benchmarks we determined that comparing
the performance of the solvers over a wide range of mesh sizes and polynomial degrees requires careful
attention to the choice of PCG stopping criterion. Naively iterating the linear solver until the initial residual
is reduced by eight digits may lead to biased results as lowest resolution solutions will likely be converged to
many more significant digits than the leading order of approximation error. Thus when reporting solution
times for low resolution the results will include unnecessary iterations that are not warranted given that the
approximation error will swamp the iterative convergence error.

To illustrate this issue we implemented two iterative stopping criteria: firstly vanilla residual reduction of
eight digits and secondly an a posteriori error indicator based condition that seeks to iterate until either the
residual is reduced by eight digits or the numerical error dominates the iterative convergence error (see for
instance Arioli [3] and the survey by Ainsworth and Oden [1] on a posteriori error estimates for finite element
analysis). In the following we present results that demonstrate the a posteriori indicator approach preserves
the leading term in the approximation error while reducing the iteration count and significantly decreases
time to solution unless the residual reduction falls below the CEED target residual reduction. This did not
require knowledge of the exact solution and achieves three goals: iteration reduction commensurate with
desired numerical approximation; improved time to solution; balanced performance study over a range of
mesh sizes and polynomial degrees.

The a posteriori indicator approach is particularly e↵ective for the CEED BPS cases with piecewise cubic
or quintic Kershaw map where the errors are relatively large due to the accuracy reduction caused by the
nonlinear coordinate transforms. Of course the error indicator does incur extra operations however it typically
does not increase the cost per iteration by more than 15% compared to using the standard CEED residual
reduction.

libParanumal CEED BPS3. This problem involves solving the Poisson problem on a uniform hexahedral
mesh deformed via piecewise linear, cubic, and quintic Kershaw coordinate transforms with deformation
parameters "y = "z = 0.3 [21]. The BPS3 variant pairs Lagrange elements of (N+1)3 Gauss-Legendre-Lobatto
nodes with a tensor-product Gauss-Legendre quadrature of size (N + 2)3.

In Figure 5 we show the H1 convergence curves for a sequence of meshes. The charts show that the leading
error for the residual and indicator based stopping criteria are in close agreement over a range of polynomial
degrees and mesh resolutions for all three Kershaw maps. The same figure also shows that the PCG iteration
counts are significantly smaller when using the indicator based stopping criterion than the residual based
criterion. The iteration gap is more pronounced for the higher order Kershaw map and this corresponds to
the loosening of stopping criterion because of the increased approximation error for the curvilinear maps.

The reduction in iteration counts with the relaxed stopping criterion yields an improved time to solution
on a single NVIDIA V00 hosted by AWS as shown in Figure 6. We also see that the throughput is improved
considerably despite the additional overhead of computing the error indicator.

In summary the original BPS3 fixed residual convergence criterion is prone to under stating the performance
of the solvers at low resolution. Using the indicator based stopping criterion yielded a substantial speed up
without including prior information about the solution. These speed ups are in addition to those obtained by
our aggressive optimizations to the libParanumal capabilities.

libParanumal CEED BPS5. In Figure 7 we show the impact of using the indicator based stopping
criterion for the CEED BPS5 benchmark. The trends are largely the same as for CEED BPS3 and any
di↵erences are due to the choice of quadrature rules used in either test.

Likewise in Figure 8 we show that the indicator based stopping criterion also benefits the throughput of
libParanumal for BPS5 while maintaining leading order accuracy.

2.4 Initial BPS5 results with Nek5000/RS

Here we present initial results for BPS5 (the diagonal-mass-matrix Poisson operator) implemented in Nek5000
and NekRS. Nek5000 supports several production preconditioning strategies as well as a choice between
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Figure 5: libParanumal CEED BPS3 ("y = "z = 0.3) benchmark results on a
single NVIDIA V100 hosted by AWS. Top: comparison of approximation error
when using the residual and indicator based PCG stopping criteria for BPS3
for the linear, cubic, and quintic Kershaw maps for a sequence of meshes at
polynomial degrees N = 1 : 7. Bottom: comparison of iteration counts for the
stopping criteria. Notice that the H1 error is very similar for both stopping
criteria and yet the iteration counts are smaller in general for the indicator based
stopping criterion. This is particularly noticeable for the higher order Kershaw
maps which induce larger numerical error allowing the indicator based stopping
criterion to stop the PCG iterations even earlier.

FlexCG and GMRES. The principal production preconditioners for Nek5000 are p-multigrid (PMG) with
(strictly) additive Schwarz preconditioning (ASM) [15, 24] and FEM-based preconditioning [5] that uses
low-order approximations, as first proposed by Orszag in the early 80s [31]. NekRS supports PMG with ASM
smoothing, Chebyshev-accelerated Jacobi smoothing (Cheb-Jac), or Chebyshev-Schwarz smoothing that is
multiplicative between levels (Cheb-Schwarz).

Nek5000 Iteration Counts on Monza CPU. Below are SEM results with Nek5000 for the Kershaw
problem with " = 1 and 0.3.

• All of these cases use GMRES-50 as we want to understand the preconditioner performance in the
context of (near) perfect projection before adding variables such as FlexCG, etc.

• For modest element counts (E < 106), we have the option of using the direct XXT -base coarse-grid
solver or AMG. For larger values of E, AMG is generally faster. Nek5000 uses the gslib version developed
by James Lottes, or some combination of that with Hypre doing the setup work.

• For the “easy” case of " = 1, the ASM case is the fastest as it has a lower iteration count than FEM-SEM
and a significantly lower cost per iteration [5].

• Although timing results are not shown here, for " = .3, the Hypre-based FEM-SEM solver is the fastest.

• The “direct” FEM-SEM preconditioner is realized by running 10 V-cycles of Hypre for each FEM
solve and is not competitive from a timing standpoint. It is used simply to establish a lower bound on
iteration count.
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Figure 6: libParanumal CEED BPS3 ("y = "z = 0.3) benchmark results on a
single NVIDIA V100 hosted by AWS. Top: comparison of H1 error versus solver
time for residual and indicator based PCG stopping criteria. Bottom: comparison
of solver throughput.

• We note that GMRES is critical to getting reasonable iteration counts with FEM-SEM.

Nek5000/NekRS Results on Summit CPU. Here we make CPU-based comparisons of the Nek5000/RS
preconditioners. NekRS has several choices for PMG smoothers but we focus on two of the usual choices,
Cheb-Schwarz and Cheb-Jac. We see that, for " = 0.3, FEM-SEM on Nek5000 is outperforming the PMG
approach both in iteration count and time. Regarding iteration count, we would expect this result given that
FEM-SEM tends to be very robust for challenging problems (which is certainly the correct characterization
of the Kershaw " = 0.3 case). Unfortunately, we do not yet have FEM-SEM working in NekRS as it is under
development, so we cannot yet make a meaningful comparison on Summit’s V100s.

3. PERFORMANCE IMPROVEMENTS FOR GPUS AND ARM

In this section we review recent performance improvements for AMD GPUs and report on our initial experience
with porting to the Fugaku system and its Fujitsu A64FX ARM chips.

3.1 New HIP backends for libCEED

In the previous milestone report [22], we reported on the development of the first two HIP backends for
libCEED: the hip-ref backend, ported from cuda-ref and providing the foundation for hiprtc usage across
future HIP backends; and a HIP version of the MAGMA backend. Progress has continued on porting
libCEED’s CUDA capabilities to HIP. Two new HIP backends have been added to libCEED: hip-shared and
hip-gen, corresponding to cuda-shared and cuda-gen, respectively. The shared backends are so-named for
their use of shared memory to optimize the basis kernels; the gen backends use code generation to create one
fused kernel for the entire libCEED Operator application, and are expected to achieve the best performance
for tensor-basis Operators (for cuda-gen, this has been demonstrated in previous reports). The current
performance of the new backends for the tensor-basis di↵usion benchmark (BP3) on an AMD MI50 GPU is
shown in Figure 11, as well as the performance of the deterministic hipMAGMA backend (gpu/hip/magma/det)
and MFEM’s default HIP backend. The libCEED backends use runtime compilation with hiprtc, while
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Figure 7: libParanumal CEED BPS5 ("y = "z = 0.3) benchmark results on a
single NVIDIA V100 hosted by AWS. Top: comparison of approximation error
when using the residual and indicator based PCG stopping criteria for BPS5
for the linear, cubic, and quintic Kershaw maps for a sequence of meshes at
polynomial degrees N = 1 : 7. Bottom: comparison of iteration counts for the
stopping criteria. Notice that the H1 error is very similar for both stopping
criteria and yet the iteration counts are smaller in general for the indicator based
stopping criterion. This is particularly noticeable for the higher order Kershaw
maps which induce larger numerical error allowing the indicator based stopping
criterion to stop the PCG iterations even earlier.

MAGMA and MFEM use templated kernels for di↵erent orders of basis functions. MFEM results are missing
eighth order basis functions due to a runtime error for those kernels.

As before, the development of the new HIP backends began with a hipification of the CUDA code.
However, in the case of the hip-shared backend, the performance was unexpectedly poor when compared to
the reference backend, hip-ref. Profiling the two backends during a run of the MFEM di↵usion benchmark
problem indicated one source of the performance degradation was the use of constant memory. Specifically,
the cuda-shared backend copies arrays associated with the basis to constant memory prior to basis kernel
application, using cudaMemcpyToSymbol. Figure 12 shows a snapshot of the profiler output for the reference
and the originally ported shared backend, highlighting the gap between the end of the QFunction kernel and
the beginning of the second basis kernel (gradient in this case, marked as grad). We see that not only is the
gap larger for the shared backend than for the reference backend, the time during the execution gap in the
shared case is dominated by calls to hipMemcpyToSymbol. HIP on AMD hardware treats constant memory
di↵erently than CUDA, and the negative result on performance is evident.

Therefore, in the hip-shared backend, the use of constant memory was replaced with device functions that
read the basis arrays in question into shared memory. These changes, included in what is now the current
hip-shared backend, led to improvements of between 30-80% on an AMD MI50 GPU when compared to the
direct port, as seen in Figure 13.

In the case of the ported hip-gen backend, one concern was the current status of the atomic operations
for AMD hardware; the cuda-gen backend requires atomicAdd to ensure correct results. To obtain an initial
rough estimate for how the use of atomic operations a↵ects benchmark performance for AMD/HIP compared
to NVIDIA/CUDA, we compare the results of the MFEM di↵usion benchmarks for the cuda-gen and hip-gen

backends to a version of each which removes the atomicAdd calls. Of course, these modified no-atomics
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Figure 8: libParanumal CEED BPS5 ("y = "z = 0.3) benchmark results on a
single NVIDIA V100 hosted by AWS. Top: comparison of H1 error versus solver
time for residual and indicator based PCG stopping criteria. Bottom: comparison
of solver throughput.

Figure 9: Nek5000 results for Kershaw 3D test with " = 1 (dashed lines) and
0.3 (solid lines) for p = 3 : 9 and E = 63, 123, . . . , 363. (Some larger cases did
not run because of lack of memory on the 8-core Monza.)

versions will likely not give the correct results, and cannot be considered a valid modification of the backends
for actual use; we aim only to gain an understanding of how requiring an atomic operation could a↵ect the
performance for the di↵erent GPUs. Figure 14 shows the ratio of the benchmark performance metric (DOFs
⇥ CG iterations / time) for the case with no atomics compared to the correct backend code. For the largest
problems, where the GPU is most e�cient, the current behavior is clearly di↵erent for HIP on the MI50 than
for CUDA on the V100. For cuda-gen, any cost of the atomic addition is o↵set by the costs of any thread
interference without it, and the atomic version is faster; for hip-gen, the atomic operation is always more
costly after the total number of degrees of freedom (DOFs) exceeds 3⇥ 105. However, this e↵ect is relatively
small for the larger basis functions orders in large problem sizes, and it is not su�cient to explain the lack of
performance of hip-gen compared to hip-shared in Figure 11 – we expect to be able to achieve much better
maximum performance for the fused kernel of hip-gen compared to the non-fused kernels of hip-shared.
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Figure 10: Nek5000/RS preconditioning results on Summit CPUs: FEM-SEM
(left), Chebyshev-Schwarz PMG (center), and Chebyshev-Jacobi PMG (right):
iteration counts (top) and time-per-dof (bottom).

3.2 Nek performance on Fugaku vs. Summit

The Nek5000 proposal was selected to perform the half-system scale simulation during the period of March
16–18 on Fugaku. In total, seven teams were selected and each team was given PHASE I and PHASE II for
half-system scale runs with four hours in each phase.

Our test approach for Fugaku is the same that we follow for any new machine. We begin with an
assessment of single-core performance and internode communication overhead, with a particular emphasis
on short-messages relevant to strong-scale performance, as detailed in [13]. Following these unit tests, we
perform strong- and weak-scale studies for full Navier-Stokes simulations. The full list of test cases on Fugaku
is shown in Table 1, demonstrating ECP CEED applications in collaboration with ECP ExaSMR, ECP
ExaWind and DOE NEAMS teams. We have performed these tests on other platforms, using CPUs and
GPUs on up to full-system scale of Summit, so that we can compare to results from Fugaku.

We initiated with ping-pong test for the system analysis, shown in Figure 15 and mxm performance
measurement, shown in Table 2. We performed small size bake-o↵ problems (BP5) in Figure 16 and turbpipe
flow simulations that are in the range of 10–128 nodes in Table 3.

The small- and medium-size problems using 100–1272 nodes ran without di�culty once we sorted out
the requisite compiler flags for Nek5000. For the problem sizes using larger than 2000 nodes, however, we
observed limitations with dramatic increase in timings for MPIIO while reading the input mesh. During the
PHASE I – 4 hours time slot, we submitted all of our large scale jobs for an hour in the range of 2000–82944
nodes and we observed that all of them got stuck in reading mesh files for cases where the input mesh files
are of modest (5.4GB) to large size (78 GB in the largest cases). We had also prepared restart files that
are as big as 1.4TB, but with the I/O di�culties we started preparing the cases that do not require restart
files. We had 24 hours before PHASE II, which was insu�cient time to implement and test for non MPIIO
ready, we tried ROMIO option in job submission script, focusing on the test cases without requirement of
restart file. The ROMIO didn’t make di↵erence and all the big jobs still got stuck reading the input file for
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Figure 11: Performance comparison of the tensor-basis scalar di↵usion bench-
mark (BP3) for four available HIP backends in MFEM: libCEED hip-shared,
top left; libCEED hip-gen, top right; libCEED hipMAGMA (deterministic),
bottom left; default MFEM HIP backend, bottom right. Results obtained on an
AMD MI50 GPU with ROCm 4.0.

CEED apps Test Case on Fugaku abbreviation scaling gridpoints node size size

Small dgemm (90% of Nek5000 ops) mxm 0.5M 1
System latency tests with pingpong pingpong 0.5M 10

CEED CG Poisson solve BP5 strong 11M 4–128 small
turbulent pipe flow turbpipe strong 0.5M 3–24

ExaWind Atmospheric boundary layer flow ABL strong 89M 128–1024 medium
ExaSMR 17⇥17 rod bundle rod1717 weak 95M–60B 106–46640
ExaSMR 17⇥17 rod bundle rod1717 strong 60B 19872–82944 large
NEAMS Full-core reactor, 352625 pebbles 350k pebble strong 33B 19872–82944

Table 1: Nek5000 Tests Cases on Fugaku.

the meshes (100MB–78GB). Fugaku half-system scale simulation support team informed their limitation of
MPIIO support on Fugaku and they are currently looking into this problem how this can be improved on the
system side.

In this report, we demonstrate what problem sizes and applications we have run and what solutions we
are preparing to move forward on Fugaku. To move further, on Nek side, we wrote a new parallel I/O routine
that can specifically support runs on Fugaku. We expect that with our new parallel I/O update, not using
MPIIO, combined with Fugaku specific llio transfer support, we would be able to move forward the larger
case above 2000 nodes. These new implementation are currently under testing on Summit at scale while
Fugaku is under maintenance period and not available to run large scale on Fugaku.
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Figure 12: Snapshot from profiling results for the di↵usion benchmark (BP3)
with third-order basis functions. The highlighted gaps show the time between
finishing the QFunction kernel and launching the second basis action (gradient)
kernel. Top: hip-ref backend. Bottom: original hip-shared port, with same
memory usage calls as cuda-shared. Results obtained on an AMD MI50 GPU
with ROCm 3.9.

Figure 13: Comparison of libCEED’s hip-shared backend with its original
ported version for the di↵usion benchmark (BP3) implemented with MFEM. Left:
the rate of DOFs processed inside the CG solver. Right: speedup of the modified
backend over the original port. Results obtained on an AMD MI50 GPU with
ROCm 4.0.

Baseline Tests. We have made the following measurements:

• matrix-matrix product (mxm) timings, which reflect > 90% of the flops in Nek5000

• ping-pong tests to gather baseline inter-rank latency and bandwidth

• all-reduce tests

• Poisson solve scaling out to 4096 ranks, using 128 nodes. This is the CEED bake-o↵ problem, BP5,
extensively analyzed for strong scaling in [14].
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Figure 14: Comparing the e↵ects of atomicAdds in (left) cuda-gen and (right)
hip-gen for the di↵usion benchmark (BP3). Results obtained on an NVIDIA
V100 GPU with CUDA 11.1 and an AMD MI50 GPU with ROCm 3.9.

code Inc IInc IIInc Ic IIc IIIc
mxm 6964 4076 4396 10507 4243 4846
mxm44 2143 2900 3432 3202 3055 3739
mxmd 3643 641 656 4343 646 672
mxmu2 6194 3978 4345 10347 4183 4773
mxmu3 6450 3379 701 9402 3719 720
mxmu4 639 152 153 669 155 155
mxmf3 6515 3979 4373 10312 4113 4823
mxmfb 6586 3968 4363 10313 4122 4826

Table 2: Nek5000: Matrix-matrix product performance (MFLOPS) on a single
core of Fugaku: C = AB with A = m⇥ 8, B = 8⇥ n. Columns correspond to I:
m = 64, n = 8, II: m = 8, n = 8, III: m = 8, n = 64. The nc and c flags indicate
whether the matrices were cached or not cached during the timings.

• Strong scaling for full Navier-Stokes out to P = 128 ranks for turbulent flow in a pipe.

We started with Nek5000’s platform timer utility which runs a battery of matrix-matrix (mxm) product
timings for sizes relevant to the spectral element method (SEM). For spectral element polynomial expansions
of order N matrix sizes are I: (M ⇥M)⇥ (M ⇥M2), II: (M ⇥M)⇥ (M ⇥M), and III: (M2⇥M)⇥ (M ⇥M),
where M = N + 1 is the number of Gauss-Lobatto-Legendre (GLL) points used in each direction within each
spectral element. These mxms account for > 90% of the flops Nek5000, so this is the performance-critical
kernel. As indicated in Table 2, the tests are run both with cached and non-cached data. In Nek5000, the
data is neither completely in or out of cache so we usually average these results when estimating likely flop
rates. Nek5000 defaults to the mxm case in the table (top row), and we see that a single core is getting about
4 to 10 GFLOPS for M = N + 1 = 8 (i.e., N=7th-order polynomials that are typical of production runs).
The performance is about 10% of the Fugaku Linpack peak, which is reasonable given the relatively small
matrices used in Nek5000. We also note that these values are about 4 to 7 times faster than what we typically
sustained on BG/Q for the same tests.

The platform timer also provides message-passing timing info by running a sequence of ping-pong tests
from rank 0 to rank p, p = 1, 2, 3,. . . ,511, for a number of 64-bit words ranging from m = 1 to 105. Figure 15
shows the results of this study (with the on-node ranks removed for clarity). In our initial trials for Fugaku,
we see two distinct curves: one for ranks p < 185 and one for p > 185, where the latter one has significant
inter-rank latency for messages of size m > 32 words. This value of m is important because many of the
messages during the SEM gather-scatter data exchange are of size m =64 (for the case N = 7), which means
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Figure 15: Ping-pong tests on Fugaku, ALCF Blue Gene/Q (Cetus), and OLCF
Summit.

Figure 16: Fugaku scaling results: (left) Poisson strong-scaling results for
P = 128 : 4096 with 11M points; (center) turbulent pipe flow for P = 16 : 128,
0.5M points; (right) time per step for successive pipe flow runs at P=128.

that they incur a relatively high cost.
From the mxm and ping-pong measurements, we anticipate that n0.8 (the number of gridpoints per rank

to realize 80% e�ciency) on Fugaku would be larger than on Mira because its cores are significantly faster
but its latency is higher. Specifically, we can estimate that Fugaku should have about a 4 ⇥ 1.5 = 6-fold
increase over the value of n0.8 = 4000 on Mira. That is, we expect the strong-scale limit (80%) e�ciency on
Fugaku to be about 24000 points per core and that is therefore (roughly) the size problem where attention to
optimization should be focused.

Figure 16(left) shows timing results for the Poisson model problem BP5 of [14]. This is a simple strong-scale
study of Jacobi-preconditioned conjugate gradient iteration, run on P=128 to 4096 cores. Here, we find
that the 80% e�ciency mark n0.8 ⇡ 5500 points per rank. Figure 16(center) shows strong-scale results for
a small Navier-Stokes simulation of turbulent pipe flow with E=1620 elements of order N=7. In this case,
n0.8 ⇡ 8700. We note that the run time at P=128 varied by 25% between successive runs. The time per step,
plotted in Fig. 16(right), shows significant spikes on several of the timesteps, some being 5⇥ larger than the
average. We assume that this is due to some type of network interference given that the same code was run
in both cases.

Table 3 shows another strong-scale study at small scale for turbulent pipe flows with E = 7840, N = 7,
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n = 2.6M and Re = 19000, demonstrating n0.8 ⇡ 5252 points per rank.

Nek5000 on Fugaku Strong, Turbpipe Flows, E = 7840, N = 7, n = 2689120
node core E n n/core tstep R Rideal Pe↵

3 128 7840 2.6M 2.1009e+04 0.77 1.00 1 100
6 256 7840 2.6M 1.0504e+04 0.41 1.87 2 93
12 512 7840 2.6M 0.5252e+04 0.24 3.20 4 80
24 1024 7840 2.6M 0.2626e+04 0.17 4.52 8 56

Table 3: CEED: Nek5000 Turbulent pipe flows on Fugaku. E = 7840, N = 7.

Performance at Medium Scale. We were able to conduct strong- and weak-scale studies on Fugaku at
medium scale. (Unfortunately, MPIIO failed reading our meshes for large-scale problems, which is an issue
that we are close to resolving by writing a stand-alone parallel reader since last week.) The strong-scale study
case is the turbulent atmospheric boundary layer (ABL) problem for the DOE ECP project, ExaWind, and
the weak-scale study is the 17⇥17 rod-bundle flow for the ECP ExaSMR project.

For the ABL flows, Table 4 demonstrates Nek5000 strong-scale results on Fugaku in comparison to
NekRS GPU strong-scale performance on OLCF/Summit. The velocity solves use Jacobi-PCG with tolerance
1.e-06. For the pressure solve, an overlapping additive Schwarz method (ASM) and a Chebyshev-accelerated
overlapping additive Schwarz method (CHEBY+ASM) smoothers are used for Nek5000 and NekRS, re-
spectively, with spectral element multigrid preconditioner. HYPRE is used for coarse grid solve. We used
characteristics-based BDF2 with 1 substep and applied projection in time for the pressure. We also show the
average velocity (vi) and pressure (pi) iteration counts over the same simulation interval. The computational
domain in nondimension is fixed with ⌦ = [0, 4]3 and we used E = 643 = 262144, N = 7, n = 89M , and
Re = 50000. Restarting with initial condition at time= 6 hours, performed for 200 steps and the averaged
timing per step, tstep, is measured in seconds for 101–200 steps with the timestep size �t in nondimension
and �t⇤ in physical unit. The real time ratio is rt = tstep/�t⇤ where �t⇤ = (L/u)�t with the characteristic
length, L=100m, and the stream velocity, 8m/s. We observe tstep on Fugaku using 32768 cores is similar to
the one on Summit using 48 GPUs, demonstrating the real time ratio rt ⇠ 1.5. In Table 5(top), we show the
same case study, focusing on the increase of the MPIIO mesh read time as the number of cores increases,
which will be discussed further in the next section, relating to the MPIIO issue.

For the 17⇥17 rods case, Table 5(bottom) demonstrates Nek5000 weak-scale results on Fugaku. We
measured the average wall time per step in seconds, tstep, using 101-200 steps for simulations with ReD = 5000.
The approximation order is N = 7, and dealiasing is used with Nq = 9. We use projection in time,
CHEBY+ASM, and flexible PCG for the pressure solves with tolerance 1.e-04. The velocity solves use
Jacobi-PCG with tolerance 1.e-06. BDF3+EXT3 is used for timestepping with �t= 3.0e-04, corresponding
to CFL=0.54 for 17⇥17 rods case. The geometries for the weak-scaling studies were generated by extruding
layers of 2D elements in the axial flow direction. For strong scaling of the 17⇥17 rods case, we used E =175M,
totaling n =60 billion grid points.

For the 17⇥17 rods case, the pressure iteration counts, pi ⇠ 2, are lower for these cases than for the
pebble cases, which have pi ⇠ 8 for the same timestepper and preconditioner. The geometric complexity of
the rod bundles is relatively mild compared to the pebble beds. Moreover, the synthetic initial condition
does not quickly transition to full turbulence. We expect more pressure iterations in the rod case (e.g., pi ⇠
4–8) once turbulent flow is established.

Performance at Half-System Scale. We have made the following strong-scale measurements on Fugaku,
to be compared to the results on OLCF/Summit:

• A long 17⇥17 rod bundle with a mesh using 175 million element, 60 billion grid points, and I/O Issue

• Full-Core 350K pebbles with a mesh using 98 million elements, 33 billion grid points, and I/O Issue

We have large case files for rod1717 and peb350k that we had I/O issue in reading our input mesh file.
The file sizes and problem sizes are in Tables 6–10.
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Nek5000 Fugaku Strong, ABL Flows, E = 643, N = 7, n = 89, 915, 392, �t=5.e-3, �t⇤=6.25e-2, CFL=3.52, ⌦ = [0, 4]3

node core E E/core n/core vi pi Ti tstep R Rideal Pe↵ rt
128 4096 2.6214e+05 64 21952 3 4.5 1 3.05e-01 1.00 1 100 4.88
256 8192 2.6214e+05 32 10976 3 4.5 1 2.13e-01 1.43 2 71 3.40
512 16384 2.6214e+05 16 5488 3 4.5 1 1.34e-01 2.27 4 56 2.14
1024 32768 2.6214e+05 8 2744 3 4.5 1 9.48e-02 3.21 8 40 1.51

NekRS Summit Strong, ABL Flows, E = 643, N = 7, n = 89, 915, 392, �t=5.e-3, �t⇤=6.25e-2, CFL=1.89, ⌦ = [0, 4]3

node gpu E E/gpu n/gpu vi pi Ti tstep R Rideal Pe↵ rt
2 16 2.6214e+05 1.6384e+04 5.6197e+06 1.7 1.86 1 2.19e-01 1.00 1.00 100 3.51
3 18 2.6214e+05 1.4564e+04 4.9953e+06 1.7 1.86 1 2.01e-01 1.08 1.12 96 3.22
4 24 2.6214e+05 1.0923e+04 3.7465e+06 1.7 1.85 1 1.54e-01 1.42 1.50 94 2.47
4 24 2.6214e+05 1.0923e+04 3.7465e+06 1.7 1.85 1 1.58e-01 1.38 1.50 92 2.53
5 30 2.6214e+05 8.7381e+03 2.9972e+06 1.7 1.87 1 1.34e-01 1.63 1.87 87 2.15
6 36 2.6214e+05 7.2818e+03 2.4976e+06 1.7 1.84 1 1.16e-01 1.89 2.25 84 1.85
7 42 2.6214e+05 6.2415e+03 2.1408e+06 1.7 1.86 1 1.05e-01 2.08 2.62 79 1.68
8 48 2.6214e+05 5.4613e+03 1.8732e+06 1.7 1.85 1 9.37e-02 2.34 3.00 78 1.49
9 54 2.6214e+05 4.8545e+03 1.6651e+06 1.7 1.86 1 9.01e-02 2.43 3.37 72 1.44
11 60 2.6214e+05 4.3691e+03 1.4986e+06 1.7 1.84 1 8.28e-02 2.64 3.75 70 1.32
12 72 2.6214e+05 3.6409e+03 1.2488e+06 1.7 1.88 1 7.34e-02 2.99 4.50 66 1.17

Table 4: DOE ExaWind Application (ABL): NekRS/Nek5000 Strong Scaling
Performance on Summit, Fugaku on a fixed domain ⌦ = [0, 4]3. Restarting with
initial condition at time= 6 hours, performed for 200 steps and the averaged timing
per step, tstep, is measured in seconds for 101–200 steps with the timestep size �t

in nondimension and �t
⇤ in physical unit. ⌦ represents the computational domain

in nondimension. The real time ratio is rt = tstep/�t
⇤ where �t

⇤ = (L/u)�t

with the characteristic length, L=100m, and the stream velocity, 8m/s.

Nek5000 on Fugaku (Strong Scaling) ABL Flow

node core E N n n/core tstep R Rideal Pe↵ MPIIO mesh read (sec)
128 4096 2.6214e+05 7 89915392 21952 3.05e-01 1.00 1 100 3.8
256 8192 2.6214e+05 7 89915392 10976 2.13e-01 1.43 2 71 22
512 16384 2.6214e+05 7 89915392 5488 1.34e-01 2.27 4 56 0.12E+03
1024 32768 2.6214e+05 7 89915392 2744 9.48e-02 3.21 8 40 0.55E+03

Nek5000 on Fugaku (Weak Scaling) 17⇥ 17 Rod Bundle

node core E N n n/core tstep R Rideal Pe↵ MPIIO mesh read (sec)
106 3392 277000 7 9.47340e+07 4.0e+05 1.462e-1 1 1 100 2.1
424 13568 1108000 7 3.78936e+08 4.0e+05 1.875e-1 0.77 1 77 5.0
1272 40704 3324000 7 1.13680e+09 4.0e+05 1.910e-1 0.76 1 76 0.56E+03
4664 149248 12188000 7 4.16829e+09 4.0e+05 - - - - not complete
11660 373120 30470000 7 1.04207e+10 4.0e+05 - - - - not complete
23320 740240 60940000 7 2.08414e+10 4.0e+05 - - - - not complete
46640 1492480 121880000 7 4.16829e+10 4.0e+05 - - - - not complete

Table 5: Nek5000 on Fugaku: Strong scaling for ABL flows; Weak scaling for
17⇥17 rod bundle simulation.

In fact, we observe the timing increase in MPIIO mesh reading at the medium scale for ABL and rod1717
cases as shown in Table 5. To address this issue, we have written a parallel reader that does not use MPIIO.
With this reader, a user-defined number of MPI ranks (e.g., Pr = 1000) will open a file and index to the
appropriate line in the file. These ranks are uniformly distributed over the full P ranks in the simulation.
Each of these ranks reads its segment and we then invoke Nek5000’s gslib-based crystal-router (all-to-all) to
migrate the data from the readers to the consumers. The gslib crystal-router [16] code is well tested and has
scaled to millions of ranks.

We observe that these cases exhibit excellent strong scaling to all of Summit, pointing to n/P ⇡ 2.5M as
the 80% e�ciency level for the V100s. Note that, save for the anomalous DNS 5⇥5 case, this value of n/P is
consistent with our previous results. As discussed in [14, 13], the leading indicator of parallel scalability for a
given algorithm-architecture coupling is n/P , rather than the number of processing units, P .

Exascale Computing Project (ECP) 17 CEED-MS36



CASE (Strong Scaling): DOE ExaSMR Turbulent flow for 17⇥ 17 Rod Bundle

node core per node core E N n n/core E/core input mesh size
8.2944e+04 32 2.6542e+06 1.7562e+08 7 6.0237e+10 2.2695e+04 66 23GB
7.9488e+04 32 2.5436e+06 1.7562e+08 7 6.0237e+10 2.3682e+04 69 23GB
3.9744e+04 32 1.2718e+06 1.7562e+08 7 6.0237e+10 4.7363e+04 138 23GB
1.9872e+04 32 6.3590e+05 1.7562e+08 7 6.0237e+10 9.4727e+04 276 23GB

8.2944e+04 40 3.3178e+06 1.7562e+08 7 6.0237e+10 1.8156e+04 52 23GB
7.9488e+04 40 3.1795e+06 1.7562e+08 7 6.0237e+10 1.8945e+04 55 23GB
3.9744e+04 40 1.5898e+06 1.7562e+08 7 6.0237e+10 3.7891e+04 110 23GB
1.9872e+04 40 7.9488e+05 1.7562e+08 7 6.0237e+10 7.5781e+04 220 23GB

8.2944e+04 48 3.9813e+06 1.7562e+08 7 6.0237e+10 1.5130e+04 44 23GB
7.9488e+04 48 3.8154e+06 1.7562e+08 7 6.0237e+10 1.5788e+04 46 23GB
3.9744e+04 48 1.9077e+06 1.7562e+08 7 6.0237e+10 3.1576e+04 92 23GB
1.9872e+04 48 9.5386e+05 1.7562e+08 7 6.0237e+10 6.3151e+04 184 23GB

Table 6: Rod1717: Nek5000 Test Case Sizes on Fugaku.

CASE (Strong Scaling): DOE NEAMS Full-Core Pebble Bed Reactor for 350K pebbles

node core per node core E N n n/core E/core input mesh size
8.2944e+04 32 2.6542e+06 9.8782e+07 7 3.3882e+10 1.2765e+04 37 78GB
7.9488e+04 32 2.5436e+06 9.8782e+07 7 3.3882e+10 1.3321e+04 38 78GB
3.9744e+04 32 1.2718e+06 9.8782e+07 7 3.3882e+10 2.6641e+04 77 78GB
1.9872e+04 32 6.3590e+05 9.8782e+07 7 3.3882e+10 5.3282e+04 155 78GB

8.2944e+04 40 3.3178e+06 9.8782e+07 7 3.3882e+10 1.0212e+04 29 78GB
7.9488e+04 40 3.1795e+06 9.8782e+07 7 3.3882e+10 1.0656e+04 31 78GB
3.9744e+04 40 1.5898e+06 9.8782e+07 7 3.3882e+10 2.1313e+04 62 78GB
1.9872e+04 40 7.9488e+05 9.8782e+07 7 3.3882e+10 4.2626e+04 124 78GB

8.2944e+04 48 3.9813e+06 9.8782e+07 7 3.3882e+10 8.5103e+03 24 78GB
7.9488e+04 48 3.8154e+06 9.8782e+07 7 3.3882e+10 8.8803e+03 25 78GB
3.9744e+04 48 1.9077e+06 9.8782e+07 7 3.3882e+10 1.7761e+04 51 78GB
1.9872e+04 48 9.5386e+05 9.8782e+07 7 3.3882e+10 3.5521e+04 103 78GB

Table 7: 350k pebbles: Nek5000 Test Case Sizes on Fugaku.

As shown in Table 5, we have made the following measurements:

• Strong scaling for ABL flow (E=643)

• Weak scaling for 17⇥17 rod bundle, with meshes using 0.2 million⇠121 million elements (total 96
million⇠41 billion grid points)

We had hoped to have more Fugaku timings for larger extension of the cases above but had di�culty with
MPIIO mesh reading and were not able to get more simulations done other than Table 4–5.

Given the available medium-scale data, we can draw the following conclusions. From Table 4, it is clear
that n0.8 > 10, 000, but we cannot conclude that it is < 20, 000 because we do not yet have data points for
the cases with 40,000 points per rank. We see that Nek5000 with 8192 cores on Fugaku performs about the
same as 17 V100s on Summit with (the highly-tuned) NekRS code. From Table 5 we see the mesh-read issues
that we have had as we tried to scale to larger problems. We are hoping that our new parallel reader will fix
this issue.

3.3 MFEM performance on Fugaku

In the beginning of 2021, the CEED team at LLNL ported the MFEM library to the Fugaku architecture
and performed an initial performance evaluation. One of the main goals of this work was to get a preliminary
impression of the level of performance achievable with the A64FX processor from Fujitsu, using pre-existing
optimized code. In particular, we are interested in comparing the performance of the A64FX with NVIDIA’s
V100 GPU. On paper, the peak double-precision FLOPs of the V100 is approximately 2.5⇥ that of the A64FX,
and so we expect to see a significant benefit running compute-bound kernels on the V100. However, the two
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chips have similar memory bandwidth, and so we expect to see only a slight advantage for memory-bound
kernels on the NVIDIA GPU.

Benchmark BP3. The BP3 benchmark which has been used is described in the CEED milestone report
MS6 [12]. It is a scalar PCG with sti↵ness matrix: we solve Au = f , where A is the Poisson operator.

The code used as starting point consists of already vectorized CPU kernels: they represent our reference
CPU and have been already improved and highly optimized, due to the bake-o↵ runs and motivated by
the deal.ii results, as explained in the CEED milestone report MS18 [8]. The CEED team added explicit
vectorization over the elements to the MFEM code, in order to deliver a resulting two- to four-fold speed-up
over the original results.

In order to optimize the microarchitecture-dependent bottlenecks that could be shared with the (weaker)
streamed multi-processors of a GPU, the CEED team merged all the kernel development work carried
out in the CEED milestone report MS8 [29] for this benchmark and ported the algorithm that have been
demonstrated as successful there. It uses one third less of memory and few FLOP less per most inner for-loop
bodies - which could make a di↵erence. This way of proceeding allows a completely fair comparison, by using
the exact same mathematical formulation and algorithms for the same benchmark BP3. The kernels have
been ported to MFEM, through the MFEM FORALL wrapper.
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Figure 17: Baseline vectorized BP3 kernels, one Xeon 6130, 32 MPI ranks -
gcc-10.2.0

Both the CPU and GPU code share now the same initial code before being mapped toward the GPU
architecture that uses a block of inner threads inside the di↵erent scheduled blocks to divide the work of
the inner for-loop bodies, whereas on the CPU side, these bodies are kept and forwarded to a single core,
introducing explicit vectorization in order to take full advantage of its internal micro-architecture.

Figure 17 shows the benefit of the development: depending on the order and the number of degrees of
freedom, a noticeable and non negligible speedup has been obtained by using tuned code for GPU and reusing
it with explicit vectorization for an x86 CPU chip.

We have good confidence that for an MPI-based only programming model this approach delivers the best
from each single core. However, a hybrid MPI+OpenMP model could be sought, in order to reduce the total
number of MPI ranks, the memory footprint on the processor and take advantage of the cache hierarchy of
the four core memory groups of the A64FX, which are connected with a NUMA ring network on chip. These
developments require more changes than the current scope of our porting and benchmarking e↵orts.
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A64FX SVE Vectorization. Achieving high performance on Fugaku requires explicit vectorization for
the x86 architecture. Some amount of auto-vectorization is possible, but forcing the compiler to use vectorized
instructions leads to the same 2⇥ speedup we have usually seen on the other architectures: SSE, AVX, QPX,
and VSX. Auto-vectorization on a SIMD length of 8 doubles can generally reach a 4⇥ speedup compared to
no vectorization at all.

Di↵erent compiler configurations were tested: Fujitsu’s C++ compiler (FCC 4.4.0a 20211027), as well as
the GNU GCC 10.2.0. Figure 18 shows the di↵erence in performances in terms of giga-degrees-of-freedom per
second (GDOF/s) between the two compilers. Since the GNU GCC compiler delivered significantly faster
performance for this test case, all subsequent results have been run using GCC.
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Figure 18: CEED BP3 results on A64FX with Fujitsu’s FCC compiler (4.4.0a)
and GNU Compiler Collection (10.2.0)

Benchmark Results. We tested 3 architectures: 1) Intel Xeon Gold 6130 2.1GHz with 16 cores, 2) A64FX
with 48 cores 2.0GHz and 3) NVIDIA Quadro GV100. Figure 19 shows the result for BP3, orders 1 and 4 for
all three architectures on the same plot. For low orders, the V100 and A64FX chips are similar, but for high
orders the V100 is 2-3⇥ faster.

Figure 20 shows on the left all orders for one A64FX, compared to one V100 on the right, where a
significantly bigger boost from high-order methods can be observed.

Many optimizations still remain to be performed, and the code could be further modified to extract the
highest possible performance from this architecture. The results are currently only based on one-core tuning,
with no specific code dedicated to data locality or hidden latency, and no specific compiler optimizations.

4. CEED-4.0 RELEASE

The CEED distribution is a collection of software packages that can be integrated together to enable e�cient
discretizations in a variety of high-order applications on unstructured grids. CEED is using the Spack package
manager for compatible building and installation of these software components, and also provides Docker
images for containerized deployment and continuous integration.

Version CEED-4.0 released on March 31st, 2021 contains 12 integrated packages ranging from low-level
modular libraries to applications, provided together within the CEED meta-package. We list these packages
below, listing some highlights for each of them since the last release. Note that many of these packages have
had more than one feature release since CEED-3.0, some of which were reported in [22]; the list below reflects
only the latest releases since CEED-3.0.
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Figure 19: Orders 1 and 4 on V100, A64FX and Xeon architectures.
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Figure 20: BP3 on Fujitsu’s A64FX and NVIDIA’s V100 architectures.

libCEED-0.8 7! Support for matrix assembly (mainly intended for low order and coarse grids), new HIP
and MAGMA backends with kernel fusion, Julia and Rust interfaces, and static linking.

MAGMA-2.5.4 7! Support for CUDA 11 and Ampere GPUs, added BLAS kernels and optimizations
needed for hipMAGMA port of MAGMA, bug fixes and performance improvements.

MFEM-4.2 7! Element and full assembly on GPUs, vectorization, HIP and CUDA improvements, new
mesh optimization and discretization algorithms, AmgX, CVODES, CPardiso, SLEPc and ADIOS2
support and 18 new examples + miniapps.

NekRS-21.0 7! NekRS is a new C++ port of Nek5000 focused in GPUs. Version 21.0 adds support
for Chebyshev-accelerated ASM and RAS smoothers, improved gather-scatter performance, stress
formulation, initial guess projection, and ALE formulation to support moving meshes.
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OCCA-1.1.0 7! Support for new ROCm releases, more flexible management of CUDA streams, and
portability improvements.

PETSc-3.15 7! Support for Kokkos and Kokkos-Kernels on NVIDIA and AMD GPUs, consolidation of
communication via the PetscSF layer with improved collective patterns and nonblocking pack/unpack
via NVSHMEM backend (see [41]), new pipelined Krylov methods, and improved support for high order
elements in the DMPlex mesh.

PUMI-2.2.5 7! Improved support for high-order nodal fields and solution transfer, extended the python
interface, and bug fixes. See the release notes for details.

The CEED-4.0 distribution also contains stable packages that have not seen a new release since CEED-3.0,
namely Laghos-3.0, Nek5000-19.0, Nekbone-17.0, NekCEM-c8db04b, and Remhos-1.0.

The distribution is tested on several platforms including Linux (RHEL and Ubuntu), Mac OSX, and
the representative heterogeneous HPC machines OLCF Summit, LLNL Lassen, and LLNL Corona. See
https://ceed.exascaleproject.org/ceed-4.0/ for details about native installation using Spack and
containerized use via Docker, Singularity, and Shifter.

5. LIBCEED-0.8 RELEASE

We have continued the development of libCEED, and as its interface has become more stable, our work
has become more independent between backend development and tuning versus high-level integration. Our
high-level integration has included language bindings that are now distributed with libCEED, including new
Julia and Rust interfaces, along with integration of libCEED in higher-level libraries like MFEM and PETSc.
Notable new features in the latest release, libCEED-0.8, include:

• The new CeedOperatorLinearAssemble facilitates assembly of sparse matrices on CPUs and GPUs, as is
often desirable for low-order operators and coarse grids.

• Julia and Rust interfaces added, providing a nearly 1-1 correspondence with the C interface, plus some
convenience features.

• New HIP MAGMA backends for hipMAGMA library users: /gpu/hip/magma and /gpu/hip/magma/det.

• New HIP backends for improved tensor basis performance: /gpu/hip/shared and /gpu/hip/gen.

• Static libraries can be built with make STATIC=1 and the pkg-config file is installed accordingly.

• Examples: the solid mechanics example has updated with traction and non-a�ne boundary conditions
as well as compact storage representations in the current configuration, similar to [11].

5.1 libCEED integration in Julia

The latest release of the libCEED library includes interfaces making the library accessible from the Julia
and Rust languages. The Julia interface makes all of the features of the libCEED library accessible from
Julia applications. Consequently, libCEED can be used from interactive REPL-based and notebook-based
programming environments. Julia’s metaprogramming and just-in-time compilation facilities are leveraged in
order to allow the user to define single-source QFunctions written in Julia that can be used on both the CPU
and GPU. Currently, user QFunctions written in Julia are compiled using CUDA.jl to run on NVIDIA GPUs.
These features allow the user to use high-level linear algebra functionality, without incurring performance
penalties. For example, the following code snippet can be used to define the “assemble di↵usion” QFunction,
which computes the quadrature data required to apply the di↵usion operator:

1 @interior_qf build_qfunc = (
2 ceed ,
3 dim=dim ,
4 (J, :in , EVAL_GRAD , dim , dim),
5 (w, :in , EVAL_WEIGHT),
6 (qdata , :out , EVAL_NONE , dim*(dim + 1)÷2),
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7 begin
8 Jinv = inv(J)
9 qdata .= setvoigt(w*det(J)*Jinv*Jinv ’)

10 end ,
11 )

In this example, the linear algebra functions det and inv compile to e�cient dimension-specific code using
only statically sized arrays.

5.2 libCEED integration in Rust

Rust is a new statically-typed programming language with precise memory semantics (no garbage collection),
strong safety and concurrency features, and powerful static analysis. It has become a popular alternative to
C and C++ in many performance-sensitive domains and we see it as a promising language for improving
reliability in scientific computing. The new interface is relatively idiomatic, and includes a test suite, examples,
and a documentation site. An extremely compelling feature of Rust is Cargo, the package manager, which
provides ergonomic and reliable dependency management, including the ability to compile libCEED from
source, thus significantly lowering the complexity of distributing and using libraries.

5.3 libCEED integration in MFEM

The integration of libCEED in MFEM brings many features into MFEM. A high-level interface in MFEM allows
the user to easily describe partially assembled libCEED operators, and fully matrix-free libCEED operators
directly using MFEM objects. The user only has to write the QFunctions, and all the libCEED function calls
are transparently handled by the high level interface. Through this interface several mfem::Integrators are
already supported:

• mfem::MassIntegrator and mfem::VectorMassIntegrator:
R
(qu, v),

• mfem::ConvectionIntegrator:
R
(q ·ru, v),

• mfem::VectorConvectionNLFIntegrator:
R
(q(ru)u, v),

• mfem::DiffusionIntegrator and mfem::VectorDiffusionIntegrator:
R
(qru,rv).

The support for these mfem::Integrators allow to use libCEED transparently in several MFEM examples
just by configuring the mfem::Device. The targeted architecture for libCEED can easily be configured
by providing the string ceed-cpu, ceed-cuda, or ceed-hip to the mfem::Device for CPUs, NVIDIA GPUs,
and AMD GPUs respectively. Specific libCEED backends can be selected using the colon symbol :, e.g.
ceed-cuda:/gpu/cuda/shared to run with the cuda-shared backend of libCEED without having to change any
code.

More recently an algebraic multigrid solver based on the libCEED integration has also been introduced in
MFEM (mfem::ceed::AlgebraicSolver). Usable with any MFEM operator that supports libCEED, this pre-
conditioner dramatically improves the performance over the Jacobi smoother (mfem::OperatorJacobiSmoother),
see Table 8.

In order to provide libCEED support for an mfem::Integrator, it is su�cient to provide the following
struct containing the data about the QFunctions and the evaluation mode of the trial and test functions:

1 /** This structure is a template interface for the Assemble methods of
2 PAIntegrator and MFIntegrator. See ceed/mass.cpp for an example. */
3 struct OperatorInfo
4 {
5 /** The path to the qFunction header. */
6 const char *header;
7 /** The name of the qFunction to build a partially assembled CeedOperator
8 with a constant Coefficient. */
9 const char *build_func_const;

10 /** The qFunction to build a partially assembled CeedOperator with a constant
11 Coefficient. */
12 CeedQFunctionUser build_qf_const;
13 /** The name of the qFunction to build a partially assembled CeedOperator
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order Jacobi Algebraic #dofs
1 49 22 31841
2 127 18 241857
3 270 20 802081
4 414 18 1884545
5 564 18 3661281
6 715 20 6304321
7 873 20 9985697
8 1031 18 14877441

Table 8: Number of iterations for the Jacobi and the algebraic matrix-free
solvers in MFEM using libCEED on a 3D mesh (fichera.mesh) solving CEED
BP3.

14 with a variable Coefficient. */
15 const char *build_func_quad;
16 /** The qFunction to build a partially assembled CeedOperator with a variable
17 Coefficient. */
18 CeedQFunctionUser build_qf_quad;
19 /** The name of the qFunction to apply a partially assembled CeedOperator. */
20 const char *apply_func;
21 /** The qFunction to apply a partially assembled CeedOperator. */
22 CeedQFunctionUser apply_qf;
23 /** The name of the qFunction to apply a matrix -free CeedOperator with a
24 constant Coefficient. */
25 const char *apply_func_mf_const;
26 /** The qFunction to apply a matrix -free CeedOperator with a constant
27 Coefficient. */
28 CeedQFunctionUser apply_qf_mf_const;
29 /** The name of the qFunction to apply a matrix -free CeedOperator with a
30 variable Coefficient. */
31 const char *apply_func_mf_quad;
32 /** The qFunction to apply a matrix -free CeedOperator with a variable
33 Coefficient. */
34 CeedQFunctionUser apply_qf_mf_quad;
35 /** The EvalMode on the trial basis functions. */
36 EvalMode trial_op;
37 /** The EvalMode on the test basis functions. */
38 EvalMode test_op;
39 /** The size of the data at each quadrature point. */
40 int qdatasize;
41 };

For example, the specialization of the struct mfem::ceed::OperatorInfo for
mfem::VectorConvectionNLFIntegrator:

1 struct NLConvectionOperatorInfo : public OperatorInfo
2 {
3 NLConvectionContext ctx;
4 NLConvectionOperatorInfo(int dim)
5 {
6 header = "/nlconvection_qf.h";
7 build_func_const = ":f_build_conv_const";
8 build_qf_const = &f_build_conv_const;
9 build_func_quad = ":f_build_conv_quad";

10 build_qf_quad = &f_build_conv_quad;
11 apply_func = ":f_apply_conv";
12 apply_qf = &f_apply_conv;
13 apply_func_mf_const = ":f_apply_conv_mf_const";
14 apply_qf_mf_const = &f_apply_conv_mf_const;
15 apply_func_mf_quad = ":f_apply_conv_mf_quad";
16 apply_qf_mf_quad = &f_apply_conv_mf_quad;
17 trial_op = EvalMode :: InterpAndGrad;
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18 test_op = EvalMode :: Interp;
19 qdatasize = dim * dim;
20 }
21 };

This data is then utilized to either create a partially assembled libCEED operator, i.e. mfem::ceed::PAIntegrator,
or fully matrix-free libCEED operator, i.e. mfem::ceed::MFIntegrator. Through inheriting from either of
these classes, a class can use the inherited Assemble method to automatically generate an MFEM operator
using transparently libCEED; requiring from the user to only write code for the libCEED QFunctions. The
following code shows the full implementation of a partially assembled mfem::VectorConvectionNLFIntegrator

operator using libCEED, the high level interface allows to keep the amount of code minimal:

1 PAVectorConvectionNLFIntegrator :: PAVectorConvectionNLFIntegrator(
2 const mfem:: FiniteElementSpace &fes ,
3 const mfem:: IntegrationRule &irm ,
4 mfem:: Coefficient *Q)
5 // Indicates that we want to build a partially assembled operator.
6 : PAIntegrator ()
7 {
8 // Initialize the information to build the libCEED operator.
9 NLConvectionOperatorInfo info(fes.GetMesh ()->Dimension ());

10 // A single call to Assemble inherited from PAIntegrator takes care of all the rest.
11 Assemble(info , fes , irm , Q);
12 }

Any mfem::Integrator that supports libCEED comes with the full set of libCEED features readily available.
This includes support for arbitrary polynomial order, basis functions, quadrature rules, and simplex and hex
meshes in 1D, 2D, 3D, see Figure 21 and Figure 22 for a comparison of the performance of tets and hexes on
an Intel Xeon E5-2695 CPU, and Figure 23 for performance on a NVIDIA V100.
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Figure 21: Comparison of the performance of partially assembled operators to
solve CEED BP3 on hexes (left) and tets (right) using an Intel Xeon E5-2695
CPU.

6. APPLICATION COLLABORATIONS

6.1 Breakthrough: NEAMS all-hex meshing for 350K pebbles

We developed an all-hex meshing strategy for the interstitial space in beds of densely-packed spheres that is
tailored to turbulent flow simulations based on spectral element method (SEM). The SEM achieves resolution
though elevated polynomial order, N , and requires two to three orders of magnitude fewer elements than
standard FEM approaches, which places stringent requirements on mesh quality and conformity. Our meshing
algorithm is based on a Voronoi decomposition of the sphere centers. Facets of the Voronoi cells are tessellated
into quads that are swept to the sphere surface to generate a high-quality base mesh. Refinements to the
algorithm include edge-collapse to remove slivers, node insertion to balance resolution, localized refinement in
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Figure 22: Comparison of the performance of fully matrix-free operators to
solve CEED BP3 on hexes (left) and tets (right) using an Intel Xeon E5-2695
CPU.
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Figure 23: Comparison of the performance of partially assembled operators to
solve CEED BP3 on hexes (left) and tets (right) using a NVIDIA V100 GPU.

the radial direction about each sphere, and mesh optimization. We demonstrate geometries with 102–105

spheres using ⇡ 300 elements (for three radial layers) per sphere, along with mesh quality measurements,
flow simulations, validation, and performance.

We have applied our all-hex meshing algorithm to several configurations listed in Table 9. We note that
the number of elements per sphere for the three-layer-per-sphere approach leads to about 300 elements per

Figure 24: Pebble meshes and simulations.
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Statistics for Several Multi-Sphere Configurations

Case N Source Container E E/N
cyl-146 146 Experiment cylinder 62,132 425.56
box-1053 1,053 StarCCM+ box 376,828 250.72
cyl-1568 1,568 StarCCM+ cylinder 524,386 334.43
cyl-3260 3,260 StarCCM+ cylinder 1,121,214 343.93
ann-3344 3,344 Project Chrono annulus 1,133,446 338.95
cyl-11k 11,145 Project Chrono cylinder 3,575,076 320.78
cyl-44k 44,257 Project Chrono cylinder 13,032,440 294.47
cyl-49k 49,967 Project Chrono cylinder 14,864,766 297.49
ann-127k 127,602 StarCCM+ annulus 39,249,190 307.52
ann-350k 352,625 StarCCM+ annulus 98,782,067 280.13

Table 9: List of cases meshed to date including the number of spheres, N , the
data source, domain shape, number of elements, E, and number of elements per
sphere.

Figure 25: Turbulent flow in an annular packed bed with N = 352625 spheres
meshed with E = 98, 782, 067 spectral elements of order N = 7 (n = 34.7 billion
gridpoints). This pebble simulation has performed up to 4608 nodes using 27648
V100s on Summit. The average pressure iterations per step is currently 13.7
when using CHEBY+ASM with 2 Chebyshev smoothing steps.

sphere, including the elements in the inlet- and exit-flow regions. Figure 24 shows several of the corresponding
sphere configurations along with axial-flow velocity distributions. Regions of order and disorder are evident
in the positions of the spheres along the domain wall for the case of N = 44252. Such ordered packing has
a direct influence on the flow conditions near the domain boundary and is an important consideration for
thermal-hydraulics analysis. All of the cases shown here were run with NekRS using the NVIDIA V100s on
the OLCF Summit supercomputer at Oak Ridge National Laboratory.

Figure 25 shows a close-up of the results for the case of N = 352625 using E = 99 million elements of
order N = 7 (n=34.7 billion gridpoints). This pebble simulation has performed up to 4608 nodes using 27648
V100s on Summit. We are currently performing di↵erent number of Chebyshev smoothing steps. The average
pressure iterations per step is currently 13.7 when using CHEBY+ASM with 2 Chebyshev smoothing steps.

As seen in Figure 26, left, the simulation using CHEBY+ASM with 2 Chebyshev smoothing steps takes
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Figure 26: NekRS simulation using 3840 nodes (23040 V100s) on Summit,
demonstrating the walltime per timestep and pressure iterations for 352625
pebbles. The timestep size is �t=4E-04. Characteristic-based BDF2 with 1
substeps is used for timestepping and Chebyshev-accelerated spectral element
multigrid preconditioner with hypre AMG for coarse grid solve is used for pressure
solve. Tolerances for pressure and velocity are 1e-4 and 1e-6, respectively. The
averaged CFL is 0.54 for 1001-2000 steps.

NekRS performance using all-hex mesh for 352625 pebbles

mesh node gpu E E/gpu N n n/gpu vi pi CFL tstep
all-hex 3840 23040 9.8721e+07 1.0289e+04 8 5.057e+10 2.19e+06 3.6 13.7 1.73 0.54

Table 10: NekRS simulations on Summit using 3840 nodes (23040 GPUs) for
352625 pebbles with Re = 500, performed for 2000 steps and the averaged timing
per step, tstep, is measured in seconds for 1001–2000 steps. The timestep size is
�t=4.E-04. vi and pi represent the averaged values of the velocity components
and pressure. Chebyshev-accelerated spectral element multigrid preconditioner
with hypre AMG for coarse grid solve is used for pressure solve. Tolerances for
pressure and velocity are 1e-4 and 1e-6, respectively. The averaged CFL is 0.54
for 1001-2000 steps.

about 0.54 second per step when running on 3840 nodes (23040 V100s), which corresponds to 2.1 million
points per V100. The case using the full system (4608 nodes) is in job queue on Summit at the moment.

In Figure 26, right, we see that the average number of pressure iterations is around 13.7 per step, which
we expect to be able to reduce further. Part of the issue stems from the highly compressed elements that are
squeezed between the sphere (nominal) contact points. As discussed in the next section, a future development
for our code will be to replace the flattened spheres at the contact points with a chamfered bridge of solid
material that will join the spheres (again, avoid the singularity of a point contact). Preliminary experience
suggests that this leads to a significant reduction in the condition number of the discrete pressure-Poisson
operator and should improve runtimes.

The overall performance statistics for the 350K case are summarized in Table 10. A similar set of statistics
for the N = 146 case is provided in Table 11 for both the all-hex meshing strategy and the tet-to-hex approach
[40]. At comparable resolution, n, the all-hex approach has a lower CFL (for the same timestep size) and
lower wall-clock time per timestep because of the lower pressure iteration count.

NekRS Coupling with OpenMC and MOOSE under Cardinal Framework. In additional to fluid
only simulations, coupled simulations have been performed with Cardinal [27], a multi-physics platform
developed in the NEAMS program. Cardinal couples NekRS to OpenMC, a Monte Carlo solver, and MOOSE,
a multi-physics framework that has been used to solve the complex physics involved in fuel performance:
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Nek5000 performance comparison between hex and tet-to-hex meshes for 146 pebbles

mesh node core E E/core N n n/core vi pi CFL tstep R
all-hex 16 672 62132 92 7 21311276 3.1713e+04 2.0 5 0.92 0.2954 1

tet-to-hex 16 672 365844 544 4 23414016 3.4842e+04 1.1 17 2.11 0.9251 3.13

Table 11: Nek5000 performance on Summit for 146 pebbles simulations with
Re = 5000, performed for 200 steps and the averaged timing per step, tstep, is
measured in seconds for 101–200 steps with the timestep size �t=8.00E-04. vi
and pi represent the averaged values of the velocity components and pressure.
R represents the ratio of hex to tet-to-hex for tstep. Characteristic-based BDF2
with 2 substeps is used for timestepping and overlapping Schwarz smoothing with
spectral element multigrid preconditioning with hypre AMG for coarse grid solve
is used for pressure solve. Tolerances for pressure and velocity are 1e-4 and 1e-6,
respectively.

Figure 27: Nek5000 simulation walltime per timestep and pressure iterations
for 146 pebbles with the timestep size �t=8.00E-04. Characteristic-based BDF2
with 2 substeps is used for timestepping and overlapping Schwarz smoothing with
spectral element multigrid preconditioning with hypre AMG for coarse grid solve
is used for pressure solve. Tolerances for pressure and velocity are 1e-4 and 1e-6,
respectively.

1. NekRS simulates the flow and temperature distribution around the pebbles on the GPUs.

2. OpenMC solves neutron transport on the CPU using 6 threads for each MPI rank.

3. MOOSE solves the unsteady conduction in the fuel pebbles on the CPU, and can incorporate more
complex fuel performance models (BISON) including fission production and transport.

The Cardinal team has performed on Summit with 6 MPI ranks per node for OpenMCS and MOOSE
and 6 GPUS per node for NekRS. The coupling simulations have been performed for a range of pebble sizes:

• 11,000 pebbles on 100 nodes.

• 127,000 pebbles on 1000 nodes.

• 350,000 pebbles on 3000 nodes.

In all cases the solution transfer between the physics did not consume more than 5.3% of runtime and the
NekRS solve consumed at least 80% of the runtime (timings based on 500 NekRS steps).
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6.2 Breakthrough: ExaSMR simulations using more than 600 million elements

We improved the PARRSB mesh partitioning algorithm to support more than 180M elements (92B grid
points). Nek5000/NekRS currently support simulations at these scales. Our developments include 64-bit
edge indexing and tools for scalable mesh extrusion and connectivity generation.

We are currently capable of supporting meshes over 600 million elements for Nek5000/RS. Our tests have
been using a relatively small polynomial order with N = 4 to keep the problem size small for being able to
debug fast at a reduced resource usage and minimal queue time on the capability test. We tested a full-core
reactor mesh, consisting of 37 of 17⇥17 rods, having more than 614 million elements (E = 614, 940, 000)
with N = 4, total 39 billion grid points. We used 3280 nodes (137760 MPI ranks), having n/P=285,686 grid
points per rank, which corresponds to 1.9 million grid points per GPU for NekRS run.

6.3 ExaWind bake-o↵ performance

We investigated accurate modeling and e�cient simulations of atmospheric boundary layer flows. We present
LES turbulence models for stable convection flows for benchmark problems, provided with validation and
convergence studies. We are currently considering three di↵erent codes, Nek5000/RS, NaluWind and AMR-
Wind, representing unstructured high-order, unstructured low-order and structured low-order discretizations
and conducting their performance on various CPU and GPU platforms including Eagle, Summit and Fugaku.
In this section, we focus on demonstrating NekRS performance on Summit.

In collaboration with ExaWind team, we have been performing the cross-verification and validation
of our LES results and corresponding wall models. We perform a number of scaling studies to compare
the performance of several ABL codes on CPU and GPU platforms. A well-documented stably stratified
atmospheric boundary layer benchmark problem that can be used for these purposes, namely, for model and
code intercomparison, is the Global Energy and Water Cycle Experiment (GEWEX) Atmospheric Boundary
Layer Study (GABLS).

We initiated with convergence studies. Table 12 demonstrates varying resolutions representing indicating
the minimum grid spacings in vertical and horizontal direction. We used the following parameters:

• Domain size 400⇥400⇥400m

• Geostrophic wind speed in the x-direction of 8m/s

• Reference potential temperature of 263.5K

• Resolution: 640 elements (8⇥ 8 in the two horizontal directions and 10 in the vertical direction). We
used a polynomial order of 7 in each direction, corresponding to an e↵ective resolution of 643. An
additional simulation with polynomial order of 11 was also performed and both results are reported.

• Initial conditions: constant x-velocity equal to geostrophic wind speed, potential temperature at the
surface equal to 265K up to 100m and after that linearly increasing with rate 0.01K/m)

• Boundary conditions: Both no-slip as well as wall functions based on log-law were tried. Better
agreement with benchmark was obtained using no-slip boundary condition at lower wall - with no need
for additional resolution - and for this reason only these results are shown here.

• LES model: In these preliminary simulations we have used a relaxation LES model based on a high-pass
filter (Schlatter et al.) which implemented through a relaxation term in the momentum equation. The
use of more sophisticated physics-based LES models can be a topic of future work.

In this report, we focus on demonstrating NekRS performance on Summit GPUs. Table 13 shows NekRS
strong scaling performance for E = 643, E = 1283, and E = 2563 with N = 8, which correspond to AMRWind
grid resolutions of 5123, 10243, and 20483, respectively. Table 13 demonstrates NekRS consistently achieves
approximately 80% parallel e�ciency using ⇠2.2 million grid points per GPU. With ExaWind team, the real
time ratio rt is used as metric to compare the performance between the codes. The rt increases, as expected,
as the resolution increases and the average-time per step tstep reasonably scales as the number of GPUs
increases for each resolution.
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Convergence Study (non-uniform in vertical)

E horizontal vertical
8x8x10 6.25m 0.75m–6.25m

32x32x10 1.56m 0.75m–6.25m

Strong Scaling starting from below (fixed domain, increasing resolution)

gpu E E/gpu n/gpu (N = 7) horizontal vertical
1 16x16x32 8192 2.8M 3.125m 1.56m
2 32x32x32 16384 5.6M 1.56m 1.56m

�16 64x64x64 16384 5.6M 0.78m 0.78m
�128 128x128x128 16384 5.6M 0.39m 0.39m
�1024 256x256x256 16384 5.6M 0.19m 0.19m

Weak Scaling (with increasing domain, keeping same mesh density)

gpu E E/gpu n/gpu (N = 7) horizontal, vertical
16 64x64x64 16384 5.6M 0.78m
64 128x128x64 16384 5.6M 0.78m
256 256x256x64 16384 5.6M 0.78m
1024 512x512x64 16384 5.6M 0.78m
gpu E E/gpu n/gpu (N = 8) horizontal, vertical
16 64x64x64 16384 8.3M 0.78m
64 128x128x64 16384 8.3M 0.78m
256 256x256x64 16384 8.3M 0.78m
1024 512x512x64 16384 8.3M 0.78m

Weak Scaling (with increasing domain, keeping same mesh density)

gpu E E/gpu n/gpu (N = 8) horizontal, vertical
30 64x64x64 8738 4.4M 0.78m
120 128x128x64 8738 4.4M 0.78m
480 256x256x64 8738 4.4M 0.78m
1920 512x512x64 8738 4.4M 0.78m
gpu E E/gpu n/gpu (N = 8) horizontal, vertical
60 64x64x64 4369 2.2M 0.78m
240 128x128x64 4369 2.2M 0.78m
960 256x256x64 4369 2.2M 0.78m
3840 512x512x64 4369 2.2M 0.78m

Table 12: Convergence study with multiple resolution with nonuniform
element size in vertical direction. Total physical simulation time is 9 hrs; Strong
Scaling: We decrease E/gpu by 16384, 14000, 12000, 10000, 8000, 6000. Initial
condition at t=6hrs and run 200 timesteps, and get the averaged time per step
using 101-200 steps. Weak Scaling with increasing domain size, keeping the
same mesh density.

6.4 Adaptive simulation workflow for RF-SciDAC

As indicated in Figure 28, tokamak fusion systems are geometric complex systems made-up of a large number
of components. Working jointly with the SciDAC Center for Integrated Simulation of Fusion Relevant RF
Actuators [7], CEED has been developing an MFEM-based simulation workflow that can e↵ectively perform
adaptive simulations of RF antenna arrays in fusion tokamak systems. The key steps in this simulation
workflow include:

• Accessing the component geometric descriptions.

• Building the analysis model geometry from the component geometry descriptions.

• Associating the required analysis attributes (material properties, loads, boundary conditions and initial
conditions) with that analysis geometry.

• Generating an initial mesh of the analysis geometry and preparing the input information needed by
MFEM.

• Performing the MFEM analyses on that mesh and applying adaptive mesh control to improve the mesh
as needed to ensure the requested solution accuracy.
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NekRS Strong Scaling, E = 643, N = 8, n = EN3 = 134, 217, 728, �t=5.e-3, �t⇤=6.25e-2, CFL=2.42, ⌦=[0,4]3

node gpu E E/gpu n/gpu vi pi Ti tstep R Rideal Pe↵ rt
4 24 2.6214e+05 1.0923e+04 5.5924e+06 2 1.81 1 2.44e-01 1.00 1.00 100 3.90
5 30 2.6214e+05 8.7381e+03 4.4739e+06 2 1.86 1 2.06e-01 1.18 1.25 94 3.30
6 36 2.6214e+05 7.2818e+03 3.7283e+06 2 1.81 1 1.80e-01 1.35 1.50 90 2.89
7 42 2.6214e+05 6.2415e+03 3.1957e+06 2 1.88 1 1.61e-01 1.51 1.75 86 2.57
8 48 2.6214e+05 5.4613e+03 2.7962e+06 2 1.82 1 1.39e-01 1.75 2.00 87 2.22
9 54 2.6214e+05 4.8545e+03 2.4855e+06 2 1.82 1 1.31e-01 1.86 2.25 82 2.09
10 60 2.6214e+05 4.3691e+03 2.2370e+06 2 1.87 1 1.20e-01 2.02 2.50 80 1.93
11 66 2.6214e+05 3.9719e+03 2.0336e+06 2 1.85 1 1.11e-01 2.19 2.75 79 1.78
12 72 2.6214e+05 3.6409e+03 1.8641e+06 2 1.89 1 1.05e-01 2.31 3.00 77 1.69
13 78 2.6214e+05 3.3608e+03 1.7207e+06 2 1.85 1 1.01e-01 2.41 3.25 74 1.62
15 90 2.6214e+05 2.9127e+03 1.4913e+06 2 1.89 1 9.37e-02 2.60 3.75 69 1.50
16 96 2.6214e+05 2.7307e+03 1.3981e+06 2 1.90 1 8.66e-02 2.82 4.00 70 1.38

NekRS Strong Scaling, E = 1283, N = 8, n = EN3 = 1, 073, 741, 824, �t=2.e-3, �t⇤=2.5e-2, CFL=1.78, ⌦=[0,4]3

node gpu E E/gpu n/gpu vi pi Ti tstep R Rideal Pe↵ rt
32 192 2.0972e+06 1.0923e+04 5.5924e+06 1 1.14 1 2.24e-01 1.00 1.00 100 8.96
40 240 2.0972e+06 8.7381e+03 4.4739e+06 2 1.19 1 2.01e-01 1.11 1.25 89 8.04
50 300 2.0972e+06 6.9905e+03 3.5791e+06 2 1.18 1 1.65e-01 1.35 1.56 86 6.60
60 360 2.0972e+06 5.8254e+03 2.9826e+06 2 1.17 1 1.45e-01 1.54 1.87 82 5.80
70 420 2.0972e+06 4.9932e+03 2.5565e+06 2 1.16 1 1.26e-01 1.77 2.18 81 5.04
80 480 2.0972e+06 4.3691e+03 2.2370e+06 2 1.18 1 1.14e-01 1.96 2.50 78 4.56
90 540 2.0972e+06 3.8836e+03 1.9884e+06 2 1.19 1 1.05e-01 2.13 2.81 75 4.20
100 600 2.0972e+06 3.4953e+03 1.7896e+06 2 1.16 1 9.92e-02 2.25 3.12 72 3.96

NekRS Strong Scaling, E = 2563, N = 8, n = EN3 = 8, 589, 934, 592, �t=1.e-3, �t⇤=1.25e-2, CFL=1.75, ⌦=[0,4]3

node gpu E E/gpu n/gpu vi pi Ti tstep R Rideal Pe↵ rt
256 1536 1.6777e+07 1.0923e+04 5.5924e+06 - - - - -
320 1920 1.6777e+07 8.7381e+03 4.4739e+06 1 1.16 1 2.10e-01 1.00 1.00 100 16.8
400 2400 1.6777e+07 6.9905e+03 3.5791e+06 1 1.20 1 1.80e-01 1.16 1.25 93 14.4
480 2880 1.6777e+07 5.8254e+03 2.9826e+06 1 1.22 1 1.54e-01 1.36 1.50 91 12.3
640 3840 1.6777e+07 4.3691e+03 2.2370e+06 1 1.25 1 1.28e-01 1.63 2.00 81 10.3
800 4800 1.6777e+07 3.4953e+03 1.7896e+06 1 1.18 1 1.05e-01 2.00 2.50 80 8.4

Table 13: NekRS strong scaling performance on Summit for varying resolution
on a fixed domain ⌦ = [0, 4]3. Restarting with initial condition at time= 6 hours,
performed for 200 steps and the averaged timing per step, tstep, is measured in
seconds for 101–200 steps with the timestep size �t in nondimension and �t

⇤ in
physical unit. ⌦ represents the computational domain in nondimension. The real
time ratio is rt = tstep/�t

⇤ where �t
⇤ = (L/u)�t with the characteristic length,

L=100m, and the stream velocity, 8m/s.

Figure 29 provides a graphical depiction of the steps that the developed work flow supports.
As outlined in [36] the process of construction of the analysis geometry involves applying a set of tools

that first obtains the geometry of the system components in terms of CAD and other models, and performs
geometric modeling operations to modify and combine those. To support geometry operations multiple tools
have been integrated into this workflow include geometric modelers, Open Cascade [30] and SimModeler
[37], that are capable of providing the non-manifold geometric models needed to support fully automatic
mesh generation, and user interfaces tools, PetraM [35, 34] and SimModeler UI to support the interactive
operations required to modify and combine geometry.

SimModeler was used in the analysis geometry construction operations in the example shown in Figure
29. The upper left image shows a portion of an antenna array as defined in the CAD system and the analysis
models created by the application of selected SimModeler geometric simplification operations. The upper
right image depicts the discrete data imported that represents two flux surfaces used in the construction
of the complete analysis model. The left image in the middle row shows the final analysis geometry that
includes the tokamak walls, the flux surfaces and the antenna array. The analysis attributes can be applied
in either SimModeler or PetraM. The right image in the middle row of figure 29 shows the use of the PetraM
user interface for attribute specification. Mesh control information is also specified directly on the analysis
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NekRS Weak Scaling, N = 8, �t=4.e-3, �t⇤=5.e-2(sec), CFL=1.93, rt = tstep/�t⇤, CHAR (1 substep)
node gpu E ⌦ E/gpu n/gpu vi pi Ti tstep R Rideal Pe↵ rt
5 30 64 2⇥ 64 [0, 4]2⇥[0,4] 8738 4.4739e+06 1 1.5 1 0.191 1.00 1.00 100 3.8
20 120 1282⇥ 64 [0, 8]2⇥[0,4] 8738 4.4739e+06 1 1.7 1 0.200 0.95 1.00 95 4.0
80 480 2562⇥ 64 [0,16]2⇥[0,4] 8738 4.4739e+06 1 1.9 1 0.218 0.87 1.00 87 3.8
320 1920 5122⇥ 64 [0,32]2⇥[0,4] 8738 4.4739e+06 1 2.4 1 0.235 0.81 1.00 81 4.7

NekRS Weak Scaling, N = 8, �t=8.e-3, �t⇤=10.e-2(sec), CFL= 3.85, rt = tstep/�t⇤, CHAR (2 substep)
node gpu E ⌦ E/gpu n/gpu vi pi Ti tstep R Rideal Pe↵ rt
5 30 64 2⇥ 64 [0, 4]2⇥[0,4] 8738 4.4739e+06 2 2.9 1 0.321 1.00 1.00 100 3.2
20 120 1282⇥ 64 [0, 8]2⇥[0,4] 8738 4.4739e+06 2 3.1 1 0.335 0.95 1.00 95 3.2
80 480 2562⇥ 64 [0,16]2⇥[0,4] 8738 4.4739e+06 2 3.1 1 0.354 0.91 1.00 91 3.5
320 1920 5122⇥ 64 [0,32]2⇥[0,4] 8738 4.4739e+06 2 3.4 1 0.376 0.85 1.00 85 3.7

NekRS: Weak Scaling, N = 8, �t=4.e-3, �t⇤=5.e-2(sec), CFL=1.93, rt = tstep/�t⇤, CHAR (1 substep)
node gpu E ⌦ E/gpu n/gpu vi pi Ti tstep R Rideal Pe↵ rt
10 60 64 2⇥ 64 [0, 4]2⇥[0,4] 4369 2.2370e+06 1 1.5 1 0.112 1.00 1.00 100 2.2
40 240 1282⇥ 64 [0, 8]2⇥[0,4] 4369 2.2370e+06 1 1.7 1 0.118 0.95 1.00 95 2.4
160 960 2562⇥ 64 [0,16]2⇥[0,4] 4369 2.2370e+06 1 2.1 1 0.127 0.88 1.00 88 2.5
640 3840 5122⇥ 64 [0,32]2⇥[0,4] 4369 2.2370e+06 1 2.5 1 0.147 0.76 1.00 76 2.9

NekRS Weak Scaling, N = 8, �t=8.e-3, �t⇤=10.e-2 (sec), CFL= 3.85, rt = tstep/�t⇤, CHAR (2 substep)
node gpu E ⌦ E/gpu n/gpu vi pi Ti tstep R Rideal Pe↵ rt
10 30 64 2⇥ 64 [0, 4]2⇥[0,4] 4369 2.2370e+06 2 2.9 1 0.186 1.00 1.00 100 1.8
40 240 1282⇥ 64 [0, 8]2⇥[0,4] 4369 2.2370e+06 2 3.0 1 0.192 0.96 1.00 96 1.9
160 960 2562⇥ 64 [0,16]2⇥[0,4] 4369 2.2370e+06 2 3.1 1 0.216 0.86 1.00 86 2.1
640 3840 5122⇥ 64 [0,32]2⇥[0,4] 4369 2.2370e+06 2 3.4 1 0.218 0.85 1.00 85 2.1

Table 14: NekRS weak scaling performance on Summit for varying sizes of the
domain ⌦ with a fixed mesh density and resolution per gpu. Restarting with initial
condition at time= 6 hours, performed for 200 steps and the averaged timing per
step, tstep, is measured in seconds for 101–200 steps with the timestep size �t in
nondimension and �t

⇤ in physical unit. ⌦ represents the computational domain
in nondimension. The real time ratio is rt = tstep/�t

⇤ where �t
⇤ = (L/u)�t

with the characteristic length, L=100m, and the stream velocity, 8m/s. Note that
n/gpu for 4.4M and 2.2M project roughly 89-95% and 80% parallel e�ciency,
respectively.

Figure 28: Left: A cutaway view of the ITER tokamak. Right: One of the RF
antenna assembles (copied with permission from the ITER Organization web
page https://www.iter.org).

Exascale Computing Project (ECP) 33 CEED-MS36



Figure 29: Key steps in the workflow for RF simulations of tokamak fusion
Systems

model entities. From there the mesh (lower left image) is automatically generated. Both MeshSim [37] and
Gmsh [17] automatic mesh generation procedures are supported.

At this point the information needed for the finite element analysis is complete and the input to the finite
element analysis can be provided via input files or using in-memory data transfer methods [18, 38]. The
MFEM high-order finite element library [2, 28] was selected by the Center for Integrated Simulation of Fusion
Relevant RF Actuators to provide the core of the finite element analysis capability used in the developed
simulation workflow. The key reasons for the selection of MFEM include:

• Support of high-order finite elements that provide high rates of convergence that can be e↵ectively
taken advantage of when solving wave types of equations. Resent results [33] on RF test cases have
clearly shown the advantage of high order methods.

• Emphasis on performant and scalable execution on the up-coming exascale computers for which almost
all of their raw compute capability will be provided by accelerators with a current emphasis on GPUs.

• Ready support of the full range of weak equation forms allowing the easy development of finite elements
that address RF physics and plasma physics models. The Center for Integrated Simulation of Fusion
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Relevant RF Actuators is also using MFEM to develop prototypes analysis capabilities address additional
physics modeling needs.

• Ease of extensibility to include new capabilities and to couple with other components that execute
additional functions. This extensibility is critical to our ability to integrate the conforming mesh
adaptation components being used.

Once an analysis step is performed, the error indication procedure described below is executed. The local
error contributions are used to estimate the desired mesh sizes over the domain. This mesh size information
is then used by the mesh adaptation procedure that is responsible for modifying the mesh to satisfy the
requested mesh sizes. Given that the initial mesh is a graded mesh of simplex elements over geometrically
complex domains, and the reliable modeling of wave like problems requires the initial meshes be su�ciently
fine, a mesh adaptation procedure that can perform general curved mesh modifications, including coarsening
past the initial mesh, and that can create geometry following mesh anisotropy are needed. The PUMI based
conforming mesh adaptation procedures [20, 23, 25] can meet these requirements and are being used in this
simulation workflow.

Mesh discretization errors in finite element simulations are a result of using finite dimensional solution
spaces. In this work we make use of the recovery-based a posteriori procedure developed in [42], specialized
for the Maxwell’s equation discretizations used in MFEM.

The elemental errors for the electric field can be defined as

kek⌦e
:=

Z

⌦e

(E�Eh)
2 d⌦

�1/2
(1)

where E and Eh, are the exact and finite element approximation for the electric field, respectively. Since the
exact solution is unknown, one can replace it with an improved approximation of the solution (E⇤) to obtain
an estimate for the discretization error. In this work the improved approximation is generated using a patch
recovery scheme that employs a least-squares fit to create a C0 field for a C�1 discontinuous solution field of
interest. MFEM’s discretization of the Maxwell’s equation represents the electric field with Nedelec basis for
which the normal components are discontinuous at element boundaries. Thus given the finite element solution
Eh, we sample this field at integration points in a patch of element around each node and fit a continuous
polynomial of a given order to obtain the recovered field E⇤ at that node.

With this we obtain the following approximation for the element error

kek⌦e
⇡ ke⇤k⌦e

:=

Z

⌦e

(E⇤ �Eh)
2 d⌦

�1/2
(2)

The total error over, as well as the percentage error, can then be defined as follows

kekL2
⇡
 

nX

e=1

ke⇤k2⌦e

!1/2

and ⌘ :=
kekL2

kE⇤kL2

(3)

where n is the total number of elements in the mesh.
A general requirement is then to have the percentage error below a certain threshold, i.e.,

⌘  ⌘max. (4)

Furthermore, the error contribution in individual elements in an optimal mesh are expected to be approximately
equal. Using these criteria we can then define the desired mesh size for each element in the mesh as follows

hdesired = hcurrent ⇥ re, (5)

where hcurrent is the current size of the element and re is the element size factor defined as follows

re = ke⇤k�
2

2p+d

⌦e

0

@ ⌘2max kE⇤k2L2

Pn
e0=1 ke⇤k

2d
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⌦e0

1

A

1
2p

(6)
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where d is the dimension of the mesh and p is the polynomial order of the finite element basis.
We apply the adaptive workflow to full wave simulation of lower hybrid waves in ITER plasmas as

described in [26, 6] and references therein. Figure 30 shows the problem domain. We will solve axis-symmetric
Maxwell’s equations with out-of-plane wave number of 200 in the vacuum and plasma regions, and 0 in
the waveguides. The in-plane components of the electric field (Er and Ez) are discretized using high order

Figure 30: Setup for the axis-symmetric full wave simulation of lower hybrid
waves in ITER plasmas.

Nedelec finite element basis, while the out-of-plane component (E�) is discretized using high-order nodal
finite element basis. The result presented here employ quadratic elements.

Figure 31 shows the meshes and solutions for the starting mesh, as well as, three successive adapted
meshes. As can be seen in these figures, the solution on the starting coarse mesh is not resolved at all.
Figure 32 shows the zoomed version of the initial and final meshes/solutions. As seen in the figures the mesh
adaption process nicely resolves the fine scale solution features.

Figure 31: Left to right: the initial (a) and adapted (b-d) meshes with corre-
sponding solution fields.
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Figure 32: Close-ups of the initial and final adapted meshes and solution fields
from Figure 31.

In the second example we consider a 3D simulation of an ICRF antenna model of the Large Plasma Device
(LAPD). This example consists of a single strap antenna Figure 33 in a cylinder. The plasma region has an
anisotropic permittivity which varies radially. The input current is applied as a port boundary condition at
the coax port shown in the picture. Figure 34 shows the initial and adapted meshes and the solution (phase)

Figure 33: Setup for the 3D LAPD example.

fields. As can be seen in these figure the solution field is not properly resolved on the initial coarse mesh.
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However, as the mesh adapts the slow wave region of the plasma domain, the solution features are resolved.

Figure 34: Initial and adapted meshes and solution fields for the LAPD
example.

7. OTHER PROJECT ACTIVITIES

7.1 Performance testing on Fugaku

Several groups in CEED have been working on porting and performance testing on the Fugaku system at
RIKEN, Japan as part of collaboration between the DOE and the Japanese Ministry of Education, Culture,
Sports, Science and Technology (MEXT). The Nek team also was awarded access to half of the Fugaku system
as part of a MEXT call, which enabled large-scale science simulation. Only seven teams were awarded such
time and Nek was the only US-based team in that group. Some of the results from this work are reported in
Section 3.

7.2 CEED minisymposiums at SIAM CSE21

Ten CEED researchers participated in the SIAM CSE21 conference, where CEED organized two min-
isymposiums (16 talks total) on “Exascale Software and Algorithms for High-Order PDE Solvers” and
“Exascale Applications for High-Order PDE Solvers”. CEED researchers also participated in various additional
minisymposiums related to matrix free preconditioning, DG methods, agile software development, and more.

7.3 CEED researchers awarded INCITE grant

Several CEED researchers were part of a recently awarded INCITE grant [39] for Direct Numerical Simulation
of Separated Flow over a Speed Bump at Higher Reynolds Numbers.

7.4 Outreach

CEED researchers were involved in a number of outreach activities, including: participation in the ASCR
workshop on “Reimagining Co-Design”; presentations at AMD research, CEED annual review, Naval Nuclear
Lab, and the UK Excalibur SLE workshop “Towards Exascale Simulation of integrated engineering systems
at extreme scale”; review committees for the SC21 workshop program and ATPESC 2021; several papers;
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and updated CEED page on the ECP website. The CEED bake-o↵ paper [14], was also featured on the ECP
website under the heading CEED project examines scalability and performance of key algorithms for HPC
applications.

8. CONCLUSION

In this milestone we improved the high-order software ecosystem for CEED-enabled ECP applications by
making progress on e�cient matrix-free kernels targeting forthcoming ECP architectures. These kernels
included matrix-free preconditioning and the development of new set of CEED solver bake-o↵ problems.

As part of this milestone, we also released the next version of the CEED software stack, CEED-4.0,
reported on results from several application collaborations and documented the e↵orts of porting to AMD
GPUs for Frontier and other modern architectures, such as Fugaku.
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