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EXECUTIVE SUMMARY

Key components of CEED software development involve fast finite element operator storage and evaluation,
architecture optimizations, performant algorithms for all orders, global kernels for finite element operators,
efficient use of the memory sub-system, optimal data locality and motion, enhanced scalability and parallelism,
and fast tensor contractions. As ultimate goals of the project, CEED is exploring and identifying the best
algorithms for the full range of discretizations and applying algorithmic and software development to support
ECP applications’ needs.

In this milestone, we initiated the development and implementation of a common CEED API consisting
of two main components: low-level and high-level APIs. We accomplished the goal of having the low-level
component ready for the release of CEED v1.0 in the next quarter, see CEED-MS13.

In this report we also provide a highlight from CEED’s integration with the MARBL app and the
corresponding Laghos miniapp. A main theme in this work has been the systematic transition of advanced
algorithms, developed and tested in Laghos, to the large-scale multi-physics settings of the MARBL code.

The low-level CEED API provides a set of FE kernels and components for writing new low-level kernels.
Examples include: vector and sparse linear algebra, element matrix assembly over a batch of elements, partial
assembly and action for efficient high-order operators like mass, diffusion, advection, etc. The main goal
of the low-level API is to establish the basis for the high-level API. Also, identifying such low-level kernels
and providing a reference implementation for them serves as the basis for collaboration with vendors and
STs. Another goal for the low-level API is to make it easy for applications with their own discretization
infrastructure, who do not want to switch directly to using the high-level CEED API, to still evaluate and
use the core operations provided by the low-level API.

One of the challenges with high-order methods is that a global sparse matrix is no longer a good
representation of a high-order linear operator, both with respect to the FLOPs needed for its evaluation,
as well as the memory transfer needed for a matvec. Thus, another important question we tried to address
while developing the low-level API is: is it possible to abstract out in a natural and efficient way the different
implementations and data structures that arise when dealing with various computational device types: CPUs,
GPUs, etc. Fully answering this question is beyond the scope of this particular milestone, since that requires
longer time as we develop and expand the devices we support.

The future high-level API will be the frontend provided by CEED consisting of high-level abstractions such
as meshes, finite element spaces and solutions, bilinear forms, solvers, etc. At this high-level, an important
aspect of the API will be to provide a uniform abstraction layer for writing code in a portable manner.
To achieve that, we plan to utilize the MPI programming model combined with a device abstraction layer
(DAL) for finite element computations that we will develop. The DAL will serve as the bridge between the
low- and the high-level APIs, allowing a variety of programming models to be used for the low-level kernel
implementations.

The software artifacts delivered as part of this milestone include an initial CEED API software imple-
mentation (libCEED) provided through the CEED website, http://ceed.exascaleproject.org and the
CEED GitHub organization, http://github.com/ceed.

In addition to details and results from the above R&D efforts, in this document we are also reporting
on other project-wide activities performed in Q1 of FY18, including: the Nek5000 v17.0 MFEM v3.3.2 and
PETSc v3.8 releases, collaborations with ECP/ST and SciDAC projects, the inaugural Nek5000 hackathon
and various outreach activities.
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1. INTRODUCTION

In this milestone, we initiated the development and implementation of a common CEED API consisting
of two main components: low-level and high-level APIs. We accomplished the goal of having the low-level
component ready for the release of CEED v1.0 in the next quarter, see CEED-MS13.

In this report we also provide a highlight from CEED’s integration with the MARBL app and the
corresponding Laghos miniapp. A main theme in this work has been the systematic transition of advanced
algorithms, developed and tested in Laghos, to the large-scale multi-physics settings of the MARBL code.

The low-level CEED API provides a set of FE kernels and components for writing new low-level kernels.
Examples include: vector and sparse linear algebra, element matrix assembly over a batch of elements, partial
assembly and action for efficient high-order operators like mass, diffusion, advection, etc. The main goal
of the low-level API is to establish the basis for the high-level API. Also, identifying such low-level kernels
and providing a reference implementation for them serves as the basis for collaboration with vendors and
STs. Another goal for the low-level API is to make it easy for applications with their own discretization
infrastructure, who do not want to switch directly to using the high-level CEED API, to still evaluate and
use the core operations provided by the low-level API.

One of the challenges with high-order methods is that a global sparse matrix is no longer a good
representation of a high-order linear operator, both with respect to the FLOPs needed for its evaluation,
as well as the memory transfer needed for a matvec. Thus, another important question we tried to address
while developing the low-level API is: is it possible to abstract out in a natural and efficient way the different
implementations and data structures that arise when dealing with various computational device types: CPUs,
GPUs, etc. Fully answering this question is beyond the scope of this particular milestone, since that requires
longer time as we develop and expand the devices we support.

The future high-level API will be the frontend provided by CEED consisting of high-level abstractions such
as meshes, finite element spaces and solutions, bilinear forms, solvers, etc. At this high-level, an important
aspect of the API will be to provide a uniform abstraction layer for writing code in a portable manner.
To achieve that, we plan to utilize the MPI programming model combined with a device abstraction layer
(DAL) for finite element computations that we will develop. The DAL will serve as the bridge between the
low- and the high-level APIs, allowing a variety of programming models to be used for the low-level kernel
implementations.

The software artifacts delivered as part of this milestone include an initial CEED API software imple-
mentation (libCEED) provided through the CEED website, http://ceed.exascaleproject.org and the
CEED GitHub organization, http://github.com/ceed.

2. THE CEED API LIBRARY: LIBCEED

This section contains a description of the initial low-level API library for the efficient high-order discretization
methods developed under CEED. While our focus is on high-order finite elements, the approach is algebraic
and thus applicable to other discretizations in factored form.

One of the challenges with high-order methods is that a global sparse matrix is no longer a good
representation of a high-order linear operator, both with respect to the FLOPs needed for its evaluation, as
well as the memory transfer needed for a matvec. Thus, high-order methods require a new “format” that still
represents a linear (or more generally, non-linear) operator, but not through a sparse matrix.

The goal of libCEED is to propose such a format, as well as supporting implementations and data
structures, that enable efficient operator evaluation on a variety of computational device types (CPUs, GPUs,
etc.). This new operator description is based on an algebraically factored form, which is easy to incorporate
in a wide variety of applications without significant refactoring of their own discretization infrastructure.

2.1 Finite Element Operator Decomposition

Finite element operators are typically defined through weak formulations of partial differential equations that
involve integration over a computational mesh. The required integrals are computed by splitting them as a
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sum over the mesh elements, mapping each element to a simple reference element (e.g. the unit square) and
applying a quadrature rule in reference space.

This sequence of operations highlights an inherent hierarchical structure present in all finite element
operators where the evaluation starts on global (trial) degrees of freedom (dofs) on the whole mesh, restricts
to degrees of freedom on subdomains (groups of elements), then moves to independent degrees of freedom on
each element, transitions to independent quadrature points in reference space, performs the integration, and
then goes back in reverse order to global (test) degrees of freedom on the whole mesh.

This is illustrated in Figure 1 for the simple case of symmetric linear operator on third order (Q3)
scalar continuous (H1) elements, where we use the notions T-vector, L-vector, E-vector and Q-vector to
represent the sets corresponding to the (true) degrees of freedom on the global mesh, the split local degrees of
freedom on the subdomains, the split degrees of freedom on the mesh elements, and the values at quadrature
points, respectively.

We refer to the operators that connect the different types of vectors as:

• Subdomain restriction P

• Element restriction G

• Basis (Dofs-to-Qpts) evaluator B

• Operator at quadrature points D

More generally, when the test and trial space differ, they get their own versions of P , G and B.

Figure 1: Fundamental finite element operator decomposition.

Note that in the case of adaptive mesh refinement (AMR), the restrictions P and G will involve not
just extracting sub-vectors, but evaluating values at constrained degrees of freedom through the AMR
interpolation. There can also be several levels of subdomains (P1, P2, etc.), and it may be convenient to split
D as the product of several operators (D1, D2, etc.).

2.1.1 Partial Assembly

Since the global operator A is just a series of variational restrictions with B, G and P , starting from its
point-wise kernel D, a “matvec” with A can be performed by evaluating and storing some of the innermost
variational restriction matrices, and applying the rest of the operators “on-the-fly”. For example, one can
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Figure 2: Comparison of memory transfer and floating point operations per
degree of freedom for different representations of a linear operator for a PDE in
3D with b components and variable coefficients arising due to Newton linearization
of a material nonlinearity. The “tensor” representation computes metric terms
on the fly and stores a compact representation of the linearization at quadrature
points. The “tensor-qstore” representation pulls the metric terms into the stored
representation. The “assembled” representation uses a (block) CSR format.

compute and store a global matrix on T-vector level. Alternatively, one can compute and store only the
subdomain (L-vector) or element (E-vector) matrices and perform the action of A using matvecs with P or
P and G. While these options are natural for low-order discretizations, they are not a good fit for high-order
methods due to the amount of FLOPs needed for their evaluation, as well as the memory transfer needed for
a matvec.

Our focus in libCEED, instead, is on partial assembly, where we compute and store only D (or portions
of it) and evaluate the actions of P , G and B on-the-fly. Critically for performance, we take advantage of
the tensor-product structure of the degrees of freedom and quadrature points on quad and hex elements to
perform the action of B without storing it as a matrix.

Implemented properly, the partial assembly algorithm requires optimal amount of memory transfers (with
respect to the polynomial order) and near-optimal FLOPs for operator evaluation, see Figure 2. It consists of
an operator setup phase, that evaluates and stores D and an operator apply (evaluation) phase that computes
the action of A on an input vector. When desired, the setup phase may be done as a side-effect of evaluating a
different operator, such as a nonlinear residual. The relative costs of the setup and apply phases are different
depending on the physics being expressed and the representation of D.

2.1.2 Parallel Decomposition

After the application of each of the first three transition operators, P , G and B, the operator evaluation is
decoupled on their ranges, so P , G and B allow us to “zoom-in” to subdomain, element and quadrature point
level, ignoring the coupling at higher levels.

Thus, a natural mapping of A on a parallel computer is to split the T-vector over MPI ranks (a non-
overlapping decomposition, as is typically used for sparse matrices), and then split the rest of the vector
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types over computational devices (CPUs, GPUs, etc.) as indicated by the shaded regions in Figure 1.
One of the advantages of the decomposition perspective in these settings is that the operators P , G,

B and D clearly separate the MPI parallelism in the operator (P ) from the unstructured mesh topology
(G), the choice of the finite element space/basis (B) and the geometry and point-wise physics D. These
components also naturally fall in different classes of numerical algorithms – parallel (multi-device) linear
algebra for P , sparse (on-device) linear algebra for G, dense/structured linear algebra (tensor contractions)
for B and parallel point-wise evaluations for D.

Currently in libCEED, it is assumed that the host application manages the global T-vectors and the
required communications among devices (which are generally on different compute nodes) with P . Our API
is thus focused on the L-vector level, where the logical devices, which in the library are represented by
the Ceed object, are independent. Each MPI rank can use one or more Ceeds, and each Ceed, in turn, can
represent one or more physical devices, as long as libCEED backends support such configurations. The idea
is that every MPI rank can use any logical device it is assigned at runtime. For example, on a node with 2
CPU sockets and 4 GPUs, one may decide to use 6 MPI ranks (each using a single Ceed object): 2 ranks
using 1 CPU socket each, and 4 using 1 GPU each. Another choice could be to run 1 MPI rank on the whole
node and use 5 Ceed objects: 1 managing all CPU cores on the 2 sockets and 4 managing 1 GPU each. The
communications among the devices, e.g. required for applying the action of P , are currently out of scope of
libCEED. The interface is non-blocking for all operations involving more than O(1) data, allowing operations
performed on a coprocessor or worker threads to overlap with operations on the host.

2.2 API Description

The libCEED API takes an algebraic approach, where the user essentially describes in the frontend the
operators G, B and D and the library provides backend implementations and coordinates their action to the
original operator on L-vector level (i.e. independently on each device / MPI task).

One of the advantages of this purely algebraic description is that it already includes all the finite element
information, so the backends can operate on linear algebra level without explicit finite element code. The
frontend description is general enough to support a wide variety of finite element algorithms, as well as some
other types algorithms such as spectral finite differences. The separation of the front- and backends enables
applications to easily switch/try different backends. It also enables backend developers to impact many
applications from a single implementation.

Our long-term vision is to include a variety of backend implementations in libCEED, ranging from
reference kernels to highly optimized kernels targeting specific devices (e.g. GPUs) or specific polynomial
orders. A simple reference backend implementation is provided in the file backends/ref/ceed-ref.c.

On the frontend, the mapping between the decomposition concepts and the code implementation is as
follows:

• L-, E- and Q-vector are represented as variables of type CeedVector. (A backend may choose to
operate incrementally without forming explicit E- or Q-vectors.)

• G is represented as variable of type CeedElemRestriction.

• B is represented as variable of type CeedBasis.

• The action of D is represented as variable of type CeedQFunction.

• The overall operator GTBTDBG is represented as variable of type CeedOperator and its action is
accessible through CeedOperatorApply().

To clarify these concepts and illustrate how they are combined in the API, consider the implementation
of the action of a simple 1D mass matrix (see also file tests/t30-operator.c).

1 #include <ceed.h>

2

3 static int setup(void *ctx , void *qdata , CeedInt Q, const CeedScalar *const *u,

4 CeedScalar *const *v) {

5 CeedScalar *w = qdata;
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6 for (CeedInt i=0; i<Q; i++) {

7 w[i] = u[1][i]*u[4][i];

8 }

9 return 0;

10 }

11

12 static int mass(void *ctx , void *qdata , CeedInt Q, const CeedScalar *const *u,

13 CeedScalar *const *v) {

14 const CeedScalar *w = qdata;

15 for (CeedInt i=0; i<Q; i++) {

16 v[0][i] = w[i] * u[0][i];

17 }

18 return 0;

19 }

20

21 int main(int argc , char **argv) {

22 Ceed ceed;

23 CeedElemRestriction Erestrictx , Erestrictu;

24 CeedBasis bx, bu;

25 CeedQFunction qf_setup , qf_mass;

26 CeedOperator op_setup , op_mass;

27 CeedVector qdata , X, U, V;

28 CeedInt nelem = 5, P = 5, Q = 8;

29 CeedInt Nx = nelem+1, Nu = nelem *(P-1) +1;

30 CeedInt indx[nelem*2], indu[nelem*P];

31 CeedScalar x[Nx];

32

33 CeedInit(argv[1], &ceed);

34 for (CeedInt i=0; i<Nx; i++) x[i] = i / (Nx - 1);

35 for (CeedInt i=0; i<nelem; i++) {

36 indx [2*i+0] = i;

37 indx [2*i+1] = i+1;

38 }

39 CeedElemRestrictionCreate(ceed , nelem , 2, Nx, CEED_MEM_HOST , CEED_USE_POINTER ,

40 indx , &Erestrictx);

41

42 for (CeedInt i=0; i<nelem; i++) {

43 for (CeedInt j=0; j<P; j++) {

44 indu[P*i+j] = i*(P-1) + j;

45 }

46 }

47 CeedElemRestrictionCreate(ceed , nelem , P, Nu, CEED_MEM_HOST , CEED_USE_POINTER ,

48 indu , &Erestrictu);

49

50 CeedBasisCreateTensorH1Lagrange(ceed , 1, 1, 2, Q, CEED_GAUSS , &bx);

51 CeedBasisCreateTensorH1Lagrange(ceed , 1, 1, P, Q, CEED_GAUSS , &bu);

52

53 CeedQFunctionCreateInterior(ceed , 1, 1, sizeof(CeedScalar),

54 (CeedEvalMode)(CEED_EVAL_GRAD|CEED_EVAL_WEIGHT),

55 CEED_EVAL_NONE , setup , __FILE__ ":setup", &qf_setup);

56 CeedQFunctionCreateInterior(ceed , 1, 1, sizeof(CeedScalar),

57 CEED_EVAL_INTERP , CEED_EVAL_INTERP ,

58 mass , __FILE__ ":mass", &qf_mass);

59

60 CeedOperatorCreate(ceed , Erestrictx , bx, qf_setup , NULL , NULL , &op_setup);

61 CeedOperatorCreate(ceed , Erestrictu , bu, qf_mass , NULL , NULL , &op_mass);

62

63 CeedVectorCreate(ceed , Nx , &X);

64 CeedVectorSetArray(X, CEED_MEM_HOST , CEED_USE_POINTER , x);

65 CeedOperatorGetQData(op_setup , &qdata);

66 CeedOperatorApply(op_setup , qdata , X, NULL , CEED_REQUEST_IMMEDIATE);

67

68 CeedVectorCreate(ceed , Nu , &U);

69 CeedVectorCreate(ceed , Nu , &V);

70 CeedOperatorApply(op_mass , qdata , U, V, CEED_REQUEST_IMMEDIATE);

71

72 CeedQFunctionDestroy (& qf_setup);

73 CeedQFunctionDestroy (& qf_mass);
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74 CeedOperatorDestroy (& op_setup);

75 CeedOperatorDestroy (& op_mass);

76 CeedElemRestrictionDestroy (& Erestrictu);

77 CeedElemRestrictionDestroy (& Erestrictx);

78 CeedBasisDestroy (&bu);

79 CeedBasisDestroy (&bx);

80 CeedVectorDestroy (&X);

81 CeedVectorDestroy (&U);

82 CeedVectorDestroy (&V);

83 CeedDestroy (&ceed);

84 return 0;

85 }

The constructor

1 CeedInit(argv[1], &ceed);

creates a logical device ceed on the specified resource, which could also be a coprocessor such as "/nvidia/0".
There can be any number of such devices, including multiple logical devices driving the same resource (though
performance may suffer in case of oversubscription). The resource is used to locate a suitable backend which
will have discretion over the implementations of all objects created with this logical device.

The setup routine above computes and stores D, in this case a scalar value in each quadrature point, while
mass uses these saved values to perform the action of D. These functions are turned into the CeedQFunction

variables qf setup and qf mass in the CeedQFunctionCreateInterior() calls:

1 int setup(void *ctx , void *qdata , CeedInt Q,

2 const CeedScalar *const *u, CeedScalar *const *v);

3 int mass(void *ctx , void *qdata , CeedInt Q,

4 const CeedScalar *const *u, CeedScalar *const *v);

5

6 {

7 CeedQFunction qf_setup , qf_mass;

8

9 CeedQFunctionCreateInterior(ceed , 1, 1, sizeof(CeedScalar),

10 (CeedEvalMode)(CEED_EVAL_GRAD|CEED_EVAL_WEIGHT),

11 CEED_EVAL_NONE , setup , __FILE__ ":setup", &qf_setup);

12 CeedQFunctionCreateInterior(ceed , 1, 1, sizeof(CeedScalar),

13 CEED_EVAL_INTERP , CEED_EVAL_INTERP ,

14 mass , __FILE__ ":mass", &qf_mass);

15 }

A CeedQFunction performs independent operations at each quadrature point and the interface is intended
to facilitate vectorization. The second argument is an expected vector length. If greater than 1, the caller
must ensure that the number of quadrature points Q is divisible by the vector length. This is often satisfied
automatically due to the element size or by batching elements together to facilitate vectorization in other
stages, and can always be ensured by padding. The data at quadrature points, qdata, is opaque to the library
and can be of any type; it is of type CeedScalar here because it simply stores a weight. The evaluation mode
CEED EVAL INTERP for both inputs and outputs indicates that the mass operator only contains terms of the
form ∫

Ω

vf0(u)

where v are test functions. More general operators, such as those of the form∫
Ω

vf0(u,∇u) +∇v · f1(u,∇u)

can be expressed using a bitwise or CEED EVAL INTERP | CEED EVAL GRAD, in which case the callback will
receive multiple inputs (outputs).

In addition to the function pointers (setup and mass), CeedQFunction constructors take a string repre-
sentation specifying where the source for the implementation is found. This is used by backends that support
Just-In-Time (JIT) compilation (i.e., OCCA) to compile for coprocessors.

The B operators for the mesh nodes, bx, and the unknown field, bu, are defined in the calls to the
function CeedBasisCreateTensorH1Lagrange. In this example, both the mesh and the unknown field use H1
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Lagrange finite elements of order 1 and 4 respectively (the P argument represents the number of 1D degrees
of freedom on each element). Both basis operators use the same integration rule, which is Gauss-Legendre
with 8 points (the Q argument).

1 CeedBasis bx, bu;

2

3 CeedBasisCreateTensorH1Lagrange(ceed , 1, 1, 2, Q, CEED_GAUSS , &bx);

4 CeedBasisCreateTensorH1Lagrange(ceed , 1, 1, P, Q, CEED_GAUSS , &bu);

Other elements with this structure can be specified in terms of the Q × P matrices that evaluate values
and gradients at quadrature points in one dimension using CeedBasisCreateTensorH1. Elements that do
not have tensor product structure, such as symmetric elements on simplices, will be created using different
constructors.

The G operators for the mesh nodes, Erestrictx, and the unknown field, Erestrictu, are specified in
the CeedElemRestrictionCreate(). Both of these specify directly the dof indices for each element in the
indx and indu arrays:

1 CeedInt indx[nelem*2], indu[nelem*P];

2

3 /* indx[i] = ...; indu[i] = ...; */

4

5 CeedElemRestrictionCreate(ceed , nelem , 2, Nx, CEED_MEM_HOST , CEED_USE_POINTER ,

6 indx , &Erestrictx);

7 CeedElemRestrictionCreate(ceed , nelem , P, Nu, CEED_MEM_HOST , CEED_USE_POINTER ,

8 indu , &Erestrictu);

If the user has arrays available on a device, they can be provided using CEED MEM DEVICE. This technique is
used to provide no-copy interfaces in all contexts that involve problem-sized data.

For discontinuous Galerkin and for applications such as Nek5000 that only explicitly store E-vectors
(inter-element continuity has been subsumed by the parallel restriction P ), the element restriction G is the
identity so the explicit indices can be elided (NULL). We plan to support other structured representations of
G which will be added according to demand. In the case of non-conforming mesh elements, G needs a more
general representation that expresses values at slave nodes (which do not appear in L-vectors) as linear
combinations of the degrees of freedom at master nodes.

With partial assembly, we first perform a setup stage where D is evaluated and stored. This is accomplished
by the operator op setup and its application to X, the nodes of the mesh (these are needed to compute
Jacobians at quadrature points). Note that the corresponding CeedOperatorApply has only input (the output
is NULL):

1 CeedVectorCreate(ceed , Nx , &X);

2 CeedVectorSetArray(X, CEED_MEM_HOST , CEED_USE_POINTER , x);

3 CeedOperatorGetQData(op_setup , &qdata);

4 CeedOperatorApply(op_setup , qdata , X, NULL , CEED_REQUEST_IMMEDIATE);

The action of the operator is then represented by operator op mass and its CeedOperatorApply to the input
L-vector U with output in V:

1 CeedVectorCreate(ceed , Nu , &U);

2 CeedVectorCreate(ceed , Nu , &V);

3 CeedOperatorApply(op_mass , qdata , U, V, CEED_REQUEST_IMMEDIATE);

A number of function calls in the interface, such as CeedOperatorApply, are intended to support asynchronous
execution via their last argument, CeedRequest*. The specific (pointer) value used in the above example,
CEED REQUEST IMMEDIATE, is used to express the request (from the user) for the operation to complete before
returning from the function call, i.e. to make sure that the result of the operation is available in the output
parameters immediately after the call. For a true asynchronous call, one needs to provide the address of a
user defined variable. Such a variable can be used later to explicitly wait for the completion of the operation.

2.3 Interface Principles and Evolution

LibCEED is intended to be extensible via backends that are packaged with the library and packaged separately
(possibly as a binary containing proprietary code). Backends are registered by calling CeedRegister(prefix,
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init function), typically in a library initializer or “constructor” that runs automatically. CeedInit uses
this prefix to find an appropriate backend for the resource.

Source (API) and binary (ABI) stability are important to libCEED. LibCEED is evolving rapidly at
present, but we expect it to stabilize soon at which point we will adopt semantic versioning. User code,
including libraries of CeedQFunctions, will not need to be recompiled except between major releases. The
backends currently have some dependence beyond the public user interface, but we intent to remove that
dependence and will prioritize if anyone expresses interest in distributing a backend outside the libCEED
repository.

3. UPDATES IN THE CEED MINIAPPS AND ECP APPLICATIONS

In this section we provide brief highlights from CEED’s recent work with ECP applications and software
technologies projects.

Some updates from integration with the MARBL app are discussed in Section 3.2. A main theme in this
work has been the systematic transition of advanced algorithms, developed and tested in the Laghos miniapp,
to the large-scale multi-physics settings of the MARBL code.

On the miniapp side, both the Laghos and Nekbone miniapps are now part of the ECP Proxy Applications
Suite v1.0. Both miniapps were also picked to be CORAL-2 benchmarks, and Laghos was selected as one
of LLNL’s ASC co-design miniapps. As part of the preparation of the the CORAL-2 benchmark problem,
Laghos was scaled up to the full Vulcan BG/Q machine at LLNL (384K MPI tasks, 200M mesh elements,
63B total unknowns). The results of these runs are described in the following Section 3.1.

3.1 Laghos Tests on BG/Q

Here we present the baseline results obtained for Laghos on the Vulcan BG/Q machine at LLNL. We ran
the 3D Sedov shock test case and documented results for three different finite element space configurations,
namely, Q2Q1, Q3Q2 and Q4Q3. All computations were performed using the partial assembly (PA, see Section
2.1.1) option, which is much more efficient than the full assembly in 3D, as shown in CEED-MS8. Every
test executed three RK4 time steps with exactly 50 CG iterations per Runge-Kutta stage, resulting in a
total of 12× 50 CG iterations. The computational mesh was always distributed between the MPI tasks by a
Cartesian partition, so that each MPI task had the same number of zones. We used the mpixlcxx r-fastmpi

compiler on Vulcan to build the required hypre and MFEM libraries.
In Figures 3–5 we show execution rates of the major Laghos kernels, namely, (i) CG inversion of the

global H1 mass operator, (ii) application of the global force operator, and (iii) update of the physics-based
quadrature data, along with the total execution rate in Figure 6. We observe that most execution rates
have similar values for Q2Q1 and Q3Q2, which are always better than Q4Q3. All rates do not seem to be
influenced by the number of utilized nodes.

Figures 7 and 8 display the weak scaling of the CG iterations and all combined kernels, respectively. The
other major kernels are not shown as they are less communication-intensive than the conjugate gradient one.
We observe almost ideal weak scaling for the performed tests.

The strong scaling study for CG and all combined kernels is shown in Figures 9 and 10, respectively.
We observe some slope deterioration as the limit of one zone per MPI task is approached, but the behavior
improves when the finite element order is increased. These tests use at most 64K Vulcan cores (4K nodes).

3.2 Updates in MARBL

The MARBL-related activities during this reporting period were focused on the following tasks:

1. Full completion of the refactoring of MARBL/BLAST’s Lagrangian phase. As discussed in
our prior milestone report, CEED-MS8, this involved rearranging the quadrature-based computations in
BLAST. This task was completed in a feature branch to be merged into BLAST’s master in Q2/FY18,
allowing the kernels from Laghos to be moved into MARBL.

2. Integration of partial assembly (PA, see Section 2.1.1) kernels into BLAST’s Lagrange
phase. The PA kernels for the action of the force operator and action of the mass matrices were taken
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Figure 3: Laghos: Inversion of the global mass operator.

Figure 4: Laghos: Application of the force operator.

Figure 5: Laghos: Update of quadrature data.

from Laghos and successfully used in BLAST. The new capabilities were tested, and the results obtained
by the fully and partially assembled operators agreed, in both 2D and 3D.

3. Physics-related extensions. As Laghos is a single-material miniapp with simplified physics, a set of
extensions is needed to support all of BLAST’s capabilities. During this period, we extended the PA
mass operators with capability to perform axisymmetric calculations, and a similar extension for the
force operators is in progress. In addition, all operators were extended to the case of multi-material
calculations.

Topics of near future work include: (i) adding PA operators for fast evaluation of gradients and mesh
Jacobians during the quadrature data update, (ii) support for multi-material closure model calculations, (iii)
support for calculations related to material strength models and magnetohydrodynamics coupling.

Once the above steps are completed, MARBL/BLAST will maintain all of its established functionality,
while using the same kernels as in Laghos. This new structure will allow quick inclusion of any optimizations
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Figure 6: Laghos: Total execution rates.

Figure 7: Laghos: Weak scaling of the CG iterations for different spaces.

Figure 8: Laghos: Weak scaling of all major kernels for different spaces.

done in Laghos, and give us the ability to compare the performance resulting from the different CPU/GPU
optimization approaches.

4. OTHER PROJECT ACTIVITIES

4.1 Nek5000 v17.0 Release

Nek5000 v17.0 was released as a major upgrade to Nek5000. Major features improvements include:

• Refactored build system.

• New user-input parameter file format (.par replacing .rea).

• Characteristics (large time-step) support for moving mesh problems.
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Figure 9: Laghos: Strong scaling of the CG iterations for different spaces.

Figure 10: Laghos: Strong scaling of all major kernels for different spaces.

• Moving mesh support for the PN − PN formulation.

• Improved stability for PN − PN with variable viscosity.

• Support for mixed Helmholtz/CVODE solves.

• New fast AMG setup tool based on HYPRE.

• New EXODUSII mesh converter.

• New interface to libxsmm (fast MATMUL library).

• Extended lowMach solver for time varying thermodynamic pressure.

• Added DG for scalars.

• Reduced solver initialization time (parallel binary reader for all input files).

• Automatic general mesh-to-mesh transfer for restarts.

• Refactored support for overlapping domains (NekNek).

• Added high-pass filter relaxation (alternative to explicit filter).

• Refactored residual projection including support for coupled Helmholtz solves.

4.2 MFEM v3.3.2 Release

MFEM v3.3.2 was released with many new features, including:

• Support for high-order mesh optimization based on the target-matrix optimization paradigm.

Exascale Computing Project (ECP) 11 CEED-MS10



• Implementation of the xSDK community policies.

• Integration with STRUMPACK.

• New linear interpolators, examples and miniapps.

• Various memory, performance, discretization and solver improvements.

• Continuous integration testing on Linux, Mac and Windows.

• And many more...

See http://mfem.org for more details.

4.3 PETSc v3.8 Release

PETSc v3.8 was released with many new features, including:

• A revamped Fortran interface.

• New FETI-DP preconditioners.

• Improved unstructured and adaptive mesh support.

• New adaptive controllers for time integration.

• Support for discrete and continuous adjoints of time-dependent models.

4.4 ECP/ST and SciDAC Collaboration

MFEM joined the xSDK project in ECP/ST as of release xSDK-0.3.0, see https://xsdk.info/packages.
MFEM and PUMI are also part of the FASTMath institute in SciDAC. One example of collaboration in
this area is the Center for Integrated Simulation of Fusion Relevant RF Actuators FES SciDAC partnership,
where the PUMI team has initiated efforts to go from complex antenna CAD models to MFEM simulations.

4.5 Nek5000 Hackathon

The inaugural Nek5000 Hackathon held at University of Illinois, Urbana-Champaign was attended by
researchers and Nek5000 developers to promote the application of Nek5000 to new problems from industry,
national laboratories, and academia. Twenty-five participants spent three days working on setting up
new examples, developing new features, and helping one another to get maximum performance on their
applications. Some of the more prominent exchanges of ideas included standardization of synthetic turbulent
inflow techniques, use of CVODE for pure advection-diffusion problems, and the use of the characteristics
methods for moving geometry applications.

4.6 Outreach

CEED researchers were involved in a number of outreach activities, including vendor deep-dives: Cray
(18-19), AMD (24-25), Intel (31-2) and a week-long PathForward reviews at LLNL. CEED researchers (P.
Fischer, E. Merzari, A. Obabko) won a Best Paper Award at the 17th International Topical Meeting on
Nuclear Reactor Thermal Hydraulics (NURETH-17) and a CEED-organized 3-part minisymposium has been
accepted at the 2018 International Conference on Spectral and High-Order Methods (ICOSAHOM18). The
project was highlighted in an article on the ECP website ( “Co-Design Center Develops Next-Generation
Simulation Tools”), HPCwire, Twitter and LLNL’s CASC newsletter. Nine CEED researchers attended the
SC17 conference.
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5. CONCLUSION

In this milestone we initiated the development and implementation of a common CEED API, focusing on its low-
level API component that it makes it easy for applications that have their own discretization to take advantage
of the high-performance algorithms developed under CEED. This work is in preparation for the release of
CEED v1.0 in the next quarter, see CEED-MS13. We delivered a initial CEED API software implementation
(libCEED) which is available through the CEED website, http://ceed.exascaleproject.org and the
CEED GitHub organization, http://github.com/ceed. In this report, we also provided a highlight from
CEED’s integration with the MARBL app and the corresponding Laghos miniapp and described additional
CEED activities performed in Q1 of FY18, including: the Nek5000 v17.0 MFEM v3.3.2 and PETSc v3.8
releases, collaborations with ECP/ST and SciDAC projects, the inaugural Nek5000 hackathon and various
outreach activities.
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